期刊文献+

Complex and p-Adic Meromorphic Functions f′P′( f ),g′P′(g) Sharing a Small Function

Complex and p-Adic Meromorphic Functions f′P′( f ),g′P′(g) Sharing a Small Function
在线阅读 下载PDF
导出
摘要 Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniqueness in value sharing prob-lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f , g be two transcendental meromorphic functions in the whole field K or in C or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions. We show that if f′P′( f ) and g′P′(g) share a small function α counting multiplicity, then f=g, provided that the multiplicity order of zeros of P′satisfy certain inequalities. A breakthrough in this pa-per consists of replacing inequalities n≥k+2 or n≥k+3 used in previous papers by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum of q counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function. Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniqueness in value sharing prob-lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f , g be two transcendental meromorphic functions in the whole field K or in C or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions. We show that if f′P′( f ) and g′P′(g) share a small function α counting multiplicity, then f=g, provided that the multiplicity order of zeros of P′satisfy certain inequalities. A breakthrough in this pa-per consists of replacing inequalities n≥k+2 or n≥k+3 used in previous papers by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum of q counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.
出处 《Analysis in Theory and Applications》 2014年第1期51-81,共31页 分析理论与应用(英文刊)
基金 Partially funded by the research project CONICYT (Inserción de nuevos investigadores en la academia, NO. 79090014) from the Chilean Government
关键词 MEROMORPHIC NEVANLINNA sharing value unicity distribution of values. Meromorphic, nevanlinna, sharing value, unicity, distribution of values.
  • 相关文献

参考文献21

  • 1T. T. H. An, J. T. Y. Wang and P. M. Wong, Unique range sets and uniqueness polynomials in positive characteristic II, Acta Arithmetica, (2005), 115-143.
  • 2T. T. H. An, J. T. Y. Wang and P. M. Wong, Strong uniqueness polynomials: the complex case, Complex Variables, 49(1) (2004),25-54.
  • 3T. T. H. An and N. T. N. Diep, Genus one factors of curves dened by separated variable polynomials, J. Number. Theory, 133 (2013),2616-2634.
  • 4T. T. H. An and A. Escassut, Meromorphic solutions of equations over non-archimedean fields, Ramanujan J., 15(3) (2008),415-433.
  • 5K. Boussaf, A. Escassut and J. Ojeda, p-adic meromorphic functions f' pi (f) ,g' pi (g) sharing a small function, Bulletin des Sciences Mathematiques, 136(2) (2012), 172-200.
  • 6K. Boussaf, A. Escassut and J. Ojeda, Complex meromorphic functions j'P/(f), g'p/(g) sharing a small function, Indagationes, 24(1) (2013), 15-4l.
  • 7A. Boutabaa, Theorie de Nevanlinna p-adique, Manuscripta Math., 67 (1990),251-269.
  • 8A. Escassut, Analytic Elements in p-Adic Analysis, World Scientific Publishing Co. Pte. Ltd. Singapore, 1995.
  • 9A. Escassut, Meromorphic functions of uniqueness, Bulletin des Sciences Mathematiques, 131(3) (2007), 219-24l.
  • 10A. Escassut, p-adic value distribution, Some Topics on Value Distribution and Differentability in Complex and P-Adic Analysis, 42-13S. Mathematics Monograph, Series 11, Science Press, Beijing, 200S.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部