Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce th...Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce the needed testing time owing to its harsh conditions. Five test stations were established, and a floating buoy and fixed test equipment were designed. A control system, including a sensor connection, data processor, video remote transmission, and corresponding control algorithm, was developed. The control system enabled the nondestructive monitoring of biological attachments and bidirectional, real-time communication between an upper server on land and the control system at the test sites. The dissolved oxygen(DO), temperature, and pH data of DOS600 and DPS600 sensors were compared with those of AP2000 sensors. Temperature recording using the DOS600 sensor was performed nearly as well as that of the AP2000 sensor. The mean DO values(standard deviations) were 8.414 mg L-1(2.068) and 6.896 mg L-1(1.235) for the DOS600 and AP2000 sensors, respectively, indicating that the DOS600 performance was unsatisfactory. The pH recording of the DPS600 was slightly worse than that of the AP2000 sensor. Experimental results showed that the DO value was more easily affected by the buoy movement of waves compared to the pH and temperature. Moreover, data fluctuations showed that the DO and pH parameters were more vulnerable to biofouling than temperature. Waves and biofouling create a harsh test environment, and the performance difference between the developed sensors and a standard sensor can be obtained in a short time period.展开更多
Analytic redundancy-based fault diagnosis technique (ARFDT) is applied to onboard maintenance system (OMS). The principle of the proposed ARFDT scheme is to design a redundancy configuration using ARFDT to enhance...Analytic redundancy-based fault diagnosis technique (ARFDT) is applied to onboard maintenance system (OMS). The principle of the proposed ARFDT scheme is to design a redundancy configuration using ARFDT to enhance the functions of redundancy management and built in test equipment (BITE) monitor. Redundancy configuration for dual-redundancy and analytic redundancy is proposed, in which, the fault diagnosis includes detection and isolation. In order to keep the balance between rapid diagnosis and binary hypothesis, a filter together with an elapsed time limit is designed for sequential probability ratio test (SPRT) in the process of isolation. Diagnosis results would be submitted to central maintenance computer (CMC) together with BITE information. Moreover, by adopting reconstruction, the designed method not only provides analytic redundancy to help redundancy management, but also compensates the output when both of the sensors of the same type are faulty. Our scheme is applied to an aircraft’s sensors in a simulation experiment, and the results show that the proposed filter SPRT (FSPRT) saves at least 50% of isolation time than Wald SPRT (WSPRT). Also, effectiveness, practicability and rapidity of the proposed scheme can be successfully achieved in OMS.展开更多
The following article has been retracted due to special reason of the author. This paper published in Vol.5 No. 2, 2013, has been removed from this site.
基金supported by the National Key Research and Development Plan(No.2019YFD0901300)the Shanghai Science and Technology Innovation Action Plan(No.16DZ1205100)the Shanghai Agriculture Applied Technology Development Program(No.T20180303)。
文摘Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce the needed testing time owing to its harsh conditions. Five test stations were established, and a floating buoy and fixed test equipment were designed. A control system, including a sensor connection, data processor, video remote transmission, and corresponding control algorithm, was developed. The control system enabled the nondestructive monitoring of biological attachments and bidirectional, real-time communication between an upper server on land and the control system at the test sites. The dissolved oxygen(DO), temperature, and pH data of DOS600 and DPS600 sensors were compared with those of AP2000 sensors. Temperature recording using the DOS600 sensor was performed nearly as well as that of the AP2000 sensor. The mean DO values(standard deviations) were 8.414 mg L-1(2.068) and 6.896 mg L-1(1.235) for the DOS600 and AP2000 sensors, respectively, indicating that the DOS600 performance was unsatisfactory. The pH recording of the DPS600 was slightly worse than that of the AP2000 sensor. Experimental results showed that the DO value was more easily affected by the buoy movement of waves compared to the pH and temperature. Moreover, data fluctuations showed that the DO and pH parameters were more vulnerable to biofouling than temperature. Waves and biofouling create a harsh test environment, and the performance difference between the developed sensors and a standard sensor can be obtained in a short time period.
基金Aeronautical Science Foundation of China (20100753009)
文摘Analytic redundancy-based fault diagnosis technique (ARFDT) is applied to onboard maintenance system (OMS). The principle of the proposed ARFDT scheme is to design a redundancy configuration using ARFDT to enhance the functions of redundancy management and built in test equipment (BITE) monitor. Redundancy configuration for dual-redundancy and analytic redundancy is proposed, in which, the fault diagnosis includes detection and isolation. In order to keep the balance between rapid diagnosis and binary hypothesis, a filter together with an elapsed time limit is designed for sequential probability ratio test (SPRT) in the process of isolation. Diagnosis results would be submitted to central maintenance computer (CMC) together with BITE information. Moreover, by adopting reconstruction, the designed method not only provides analytic redundancy to help redundancy management, but also compensates the output when both of the sensors of the same type are faulty. Our scheme is applied to an aircraft’s sensors in a simulation experiment, and the results show that the proposed filter SPRT (FSPRT) saves at least 50% of isolation time than Wald SPRT (WSPRT). Also, effectiveness, practicability and rapidity of the proposed scheme can be successfully achieved in OMS.
文摘The following article has been retracted due to special reason of the author. This paper published in Vol.5 No. 2, 2013, has been removed from this site.