In recent years, with the rapid development of sensing technology and deployment of various Internet of Everything devices, it becomes a crucial and practical challenge to enable real-time search queries for objects, ...In recent years, with the rapid development of sensing technology and deployment of various Internet of Everything devices, it becomes a crucial and practical challenge to enable real-time search queries for objects, data, and services in the Internet of Everything. Moreover, such efficient query processing techniques can provide strong facilitate the research on Internet of Everything security issues. By looking into the unique characteristics in the IoE application environment, such as high heterogeneity, high dynamics, and distributed, we develop a novel search engine model, and build a dynamic prediction model of the IoE sensor time series to meet the real-time requirements for the Internet of Everything search environment. We validated the accuracy and effectiveness of the dynamic prediction model using a public sensor dataset from Intel Lab.展开更多
A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engine...A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.展开更多
With the raising complexity of modern civil aircraft,both academy and industry have shown strong interests on MBSE(Model-Based System Engineering).However,following the application of MBSE,the duration of the design p...With the raising complexity of modern civil aircraft,both academy and industry have shown strong interests on MBSE(Model-Based System Engineering).However,following the application of MBSE,the duration of the design phase exceeded expectations.This paper conducted a survey to the relevant participants involved in the design,revealed that a lack of proper process management is a critical issue.The current MBSE methodology does not provide clear guidelines for monitoring,controlling,and managing processes,which are crucial for both efficiency and effectiveness.To address this,the present paper introduced an improved Process Model(PM)within the MBSE framework for civil aircraft design.This improved model incorporates three new Management Blocks(MB):Progress Management Block(PMB),Review Management Block(RMB),and Configuration Management Block(CMB),developed based on the Capability Maturity Model Integration(CMMI).These additions aim to streamline the design process and better align it with engineering practices.The upgraded MBSE method with the improved PM offers a more structured approach to manage complex aircraft design projects,and a case study is conducted to validate its potential to reduce timelines and enhance overall project outcomes.展开更多
基金supported by the National Natural Science Foundation of China under NO.61572153, NO. 61702220, NO. 61702223, and NO. U1636215the National Key research and Development Plan (Grant No. 2018YFB0803504)
文摘In recent years, with the rapid development of sensing technology and deployment of various Internet of Everything devices, it becomes a crucial and practical challenge to enable real-time search queries for objects, data, and services in the Internet of Everything. Moreover, such efficient query processing techniques can provide strong facilitate the research on Internet of Everything security issues. By looking into the unique characteristics in the IoE application environment, such as high heterogeneity, high dynamics, and distributed, we develop a novel search engine model, and build a dynamic prediction model of the IoE sensor time series to meet the real-time requirements for the Internet of Everything search environment. We validated the accuracy and effectiveness of the dynamic prediction model using a public sensor dataset from Intel Lab.
基金Sponsored by the Ministerial Level Advanced Research(10660060220)
文摘A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.
基金supported by the National Natural Science Foundation of China(No.62073267)。
文摘With the raising complexity of modern civil aircraft,both academy and industry have shown strong interests on MBSE(Model-Based System Engineering).However,following the application of MBSE,the duration of the design phase exceeded expectations.This paper conducted a survey to the relevant participants involved in the design,revealed that a lack of proper process management is a critical issue.The current MBSE methodology does not provide clear guidelines for monitoring,controlling,and managing processes,which are crucial for both efficiency and effectiveness.To address this,the present paper introduced an improved Process Model(PM)within the MBSE framework for civil aircraft design.This improved model incorporates three new Management Blocks(MB):Progress Management Block(PMB),Review Management Block(RMB),and Configuration Management Block(CMB),developed based on the Capability Maturity Model Integration(CMMI).These additions aim to streamline the design process and better align it with engineering practices.The upgraded MBSE method with the improved PM offers a more structured approach to manage complex aircraft design projects,and a case study is conducted to validate its potential to reduce timelines and enhance overall project outcomes.