The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record ...The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record the signal of a particle, a novel method of encoded multiplexing readout for MPGDs is presented in this paper. The method offers a feasible and easily-extensible way of encoding and decoding, and can significantly reduce the number of readout channels. A verification test was carried out on a 5 cm×5 cm Thick Gas Electron Multiplier (THGEM) detector using a 8 keV Cu X-ray source with 100um slit, where 166 strips were read out by 21 encoded readout channels. The test results show good linearity in its position response, and the spatial resolution root-mean-square (RMS) of the test system is about 260um. This method has potential to build large area detectors and can be easily adapted to other detectors similar to MPGDs.展开更多
基金Supported by National Natural Science Foundation of China(11222552,11265003)
文摘The requirement of a large number of electronic channels poses a big challenge to the further applications of Micro-pattern Gas Detectors (MPGDs). By using the redundancy that at least two neighboring strips record the signal of a particle, a novel method of encoded multiplexing readout for MPGDs is presented in this paper. The method offers a feasible and easily-extensible way of encoding and decoding, and can significantly reduce the number of readout channels. A verification test was carried out on a 5 cm×5 cm Thick Gas Electron Multiplier (THGEM) detector using a 8 keV Cu X-ray source with 100um slit, where 166 strips were read out by 21 encoded readout channels. The test results show good linearity in its position response, and the spatial resolution root-mean-square (RMS) of the test system is about 260um. This method has potential to build large area detectors and can be easily adapted to other detectors similar to MPGDs.