Volumetric elastic modulus (VEM) is an important parameter in biophysics and biomechanics of plants for in particular understanding cell growth. This paper proposes a new relation that can be used for precisely dete...Volumetric elastic modulus (VEM) is an important parameter in biophysics and biomechanics of plants for in particular understanding cell growth. This paper proposes a new relation that can be used for precisely determining VEM. With the aid of this relation, it shows that the exponential approximation of the pressure-volume relationship adopted in most of the literatures in this field may lead to serious errors on VEM.展开更多
The connective tissue fiber system and the surfactant system are essential and interdependent components of lung elasticity. Despite considerable efforts over the last decades, we are still far from understanding the ...The connective tissue fiber system and the surfactant system are essential and interdependent components of lung elasticity. Despite considerable efforts over the last decades, we are still far from understanding the quantitative roles of either the connective tissue fiber or the surfactant systems. Through thermo-statistic considerations of alveolar micromechanics, the author introduced a thermo-statistic state function “entropy” to analyze the elastic property of pulmonary parenchyma based on the origami model of alveolar polyhedron. By use of the entropy for alveolar micromechanics, from the logistic equation for the static pressure (P)-volume (V) curves including parameters a, b, c, and k (V - a = b/[1+ exp{-k (P - c)}]), a set of equations was obtained to define the internal energy of lungs (U<sub>L</sub>) and its corresponding lung volume (V<sub>L</sub>). Then, by use of parameters a, b, c, and k, an individual volume-internal energy (V<sub>L</sub><sub> </sub>- U<sub>L</sub>) diagram was constructed from reported data in patients on mechanical ventilation. Each V<sub>L</sub> - U<sub>L</sub> diagram constructed was discussed that its minimal value U<sub>o</sub> = c (a + b/2) and its shape parameter b/k represent quantitatively the energy of tissue force and the energy of surface force. Furthermore, by use of the V<sub>L</sub><sub> </sub>- U<sub>L</sub> relationship, the hysteresis of lungs estimated by entropy production was discussed as dependent on the difference in the number of contributing pulmonary lobules. That is, entropy production might be a novel quantitative indicator to estimate the dynamics of the bronchial tree. These values obtained by combinations of parameters of the logistic P-V curve seem useful indicators to optimize setting a mechanical ventilator. Thus, it is necessary to develop easy tools for fitting the individual sigmoid pressure-volume curve measured in the intensive care unit to the logistic equation.展开更多
Objective: Ischemic conditioning (IC) limits myocyte necrosis after acute myocardial ischemia-reperfusion;however, controversy persists regarding its potential to attenuate LV contractile dysfunction. Pressure-volume ...Objective: Ischemic conditioning (IC) limits myocyte necrosis after acute myocardial ischemia-reperfusion;however, controversy persists regarding its potential to attenuate LV contractile dysfunction. Pressure-volume (P-V) loop analysis, via the load-insensitive conductance catheter method, was used to evaluate LV contractility, diastolic function, and ventriculo-arterial coupling. The goal of this study was to evaluate the ability of IC to improve post-ischemic recovery of LV contractile function. Methods: Twelve anesthetized dogs were randomly distributed to either the IC or the non-IC group;all dogs were subject to 60-min acute coronary occlusion followed by 180-min reperfusion. IC consisted of 4 repeated cycles of 5-min occlusion and 5-min reperfusion of the left main coronary artery. LV P-V relations were constructed under steady-state conditions (by inferior vena cava occlusion) at the beginning and end of the experiments;P-V loops were acquired at different time points before and during ischemia-reperfusion. Results: During ischemia and reperfusion, dP/dt<sub>max</sub> decreased significantly compared to baseline in both groups;dP/dt<sub>min</sub>, an indicator of the rate of LV relaxation rate was not affected for either group. Significant changes in several parameters of LV function including LVEF, SW, tPFR, ESV, and EDV caused by ischemia were also identified;none of these negative effects were resorbed, even in part, during reperfusion. Conclusions: Diminished LV contractile efficiency during systole and diastole produced by ischemia-reperfusion did not improve with IC pre-treatment despite significant endogenous protection against tissue necrosis.展开更多
Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fag...Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fagus orientalis Lipsky),a widespread species in the Hyrcanian region.Assessing the impacts of plot size on species diversity is fundamental for an ecosystem-based approach to forest management.This study determined the relation of species diversity and plot size by investigating species richness and abundance of both canopy and forest floor.Two hundred and fifty-six sample plots of 625 m^(2) each were layout in a grid pattern across 16 ha.Base plots(25 m×25 m)were integrated in different scales to investigate the effect of plot size on species diversity.The total included nine plots of 0.063,0.125,0.188,0.250,0.375,0.500,0.563,0.750 and 1 ha.Ten biodiversity indices were calculated.The results show that species richness in the different plot sizes was less than the actual value.The estimated value of the Simpson species diversity index was not significantly different from actual values for both canopy and forest floor diversity.The coefficient of variation of this index for the 1-ha sample plot showed the lowest amount across different plot sizes.Inverse Hill species diversity was insignificant difference across different plot sizes with an area greater than 0.500 ha.The modified Hill evenness index for the 1-ha sample size was a correct estimation of the 16-ha for both canopy and forest floor;however,the precision estimation was higher for the canopy layer.All plots greater than 0.250-ha provided an accurate estimation of the Camargo evenness index for forest floor species,but was inaccurate across different plot sizes for the canopy layer.The results indicate that the same plot size did not have the same effect across species diversity measurements.Our results show that correct estimation of species diversity measurements is related to the selection of appropriate indicators and plot size to increase the accuracy of the estimate so that the cost and time of biodiversity management may be reduced.展开更多
Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tre...Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.展开更多
Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ...Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.展开更多
基金supported by the National Natural Science Foundation of China(10772100)
文摘Volumetric elastic modulus (VEM) is an important parameter in biophysics and biomechanics of plants for in particular understanding cell growth. This paper proposes a new relation that can be used for precisely determining VEM. With the aid of this relation, it shows that the exponential approximation of the pressure-volume relationship adopted in most of the literatures in this field may lead to serious errors on VEM.
文摘The connective tissue fiber system and the surfactant system are essential and interdependent components of lung elasticity. Despite considerable efforts over the last decades, we are still far from understanding the quantitative roles of either the connective tissue fiber or the surfactant systems. Through thermo-statistic considerations of alveolar micromechanics, the author introduced a thermo-statistic state function “entropy” to analyze the elastic property of pulmonary parenchyma based on the origami model of alveolar polyhedron. By use of the entropy for alveolar micromechanics, from the logistic equation for the static pressure (P)-volume (V) curves including parameters a, b, c, and k (V - a = b/[1+ exp{-k (P - c)}]), a set of equations was obtained to define the internal energy of lungs (U<sub>L</sub>) and its corresponding lung volume (V<sub>L</sub>). Then, by use of parameters a, b, c, and k, an individual volume-internal energy (V<sub>L</sub><sub> </sub>- U<sub>L</sub>) diagram was constructed from reported data in patients on mechanical ventilation. Each V<sub>L</sub> - U<sub>L</sub> diagram constructed was discussed that its minimal value U<sub>o</sub> = c (a + b/2) and its shape parameter b/k represent quantitatively the energy of tissue force and the energy of surface force. Furthermore, by use of the V<sub>L</sub><sub> </sub>- U<sub>L</sub> relationship, the hysteresis of lungs estimated by entropy production was discussed as dependent on the difference in the number of contributing pulmonary lobules. That is, entropy production might be a novel quantitative indicator to estimate the dynamics of the bronchial tree. These values obtained by combinations of parameters of the logistic P-V curve seem useful indicators to optimize setting a mechanical ventilator. Thus, it is necessary to develop easy tools for fitting the individual sigmoid pressure-volume curve measured in the intensive care unit to the logistic equation.
文摘Objective: Ischemic conditioning (IC) limits myocyte necrosis after acute myocardial ischemia-reperfusion;however, controversy persists regarding its potential to attenuate LV contractile dysfunction. Pressure-volume (P-V) loop analysis, via the load-insensitive conductance catheter method, was used to evaluate LV contractility, diastolic function, and ventriculo-arterial coupling. The goal of this study was to evaluate the ability of IC to improve post-ischemic recovery of LV contractile function. Methods: Twelve anesthetized dogs were randomly distributed to either the IC or the non-IC group;all dogs were subject to 60-min acute coronary occlusion followed by 180-min reperfusion. IC consisted of 4 repeated cycles of 5-min occlusion and 5-min reperfusion of the left main coronary artery. LV P-V relations were constructed under steady-state conditions (by inferior vena cava occlusion) at the beginning and end of the experiments;P-V loops were acquired at different time points before and during ischemia-reperfusion. Results: During ischemia and reperfusion, dP/dt<sub>max</sub> decreased significantly compared to baseline in both groups;dP/dt<sub>min</sub>, an indicator of the rate of LV relaxation rate was not affected for either group. Significant changes in several parameters of LV function including LVEF, SW, tPFR, ESV, and EDV caused by ischemia were also identified;none of these negative effects were resorbed, even in part, during reperfusion. Conclusions: Diminished LV contractile efficiency during systole and diastole produced by ischemia-reperfusion did not improve with IC pre-treatment despite significant endogenous protection against tissue necrosis.
基金funded by Gorgan University of Agricultural Sciences and Natural Resources(grant number 9318124503).
文摘Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fagus orientalis Lipsky),a widespread species in the Hyrcanian region.Assessing the impacts of plot size on species diversity is fundamental for an ecosystem-based approach to forest management.This study determined the relation of species diversity and plot size by investigating species richness and abundance of both canopy and forest floor.Two hundred and fifty-six sample plots of 625 m^(2) each were layout in a grid pattern across 16 ha.Base plots(25 m×25 m)were integrated in different scales to investigate the effect of plot size on species diversity.The total included nine plots of 0.063,0.125,0.188,0.250,0.375,0.500,0.563,0.750 and 1 ha.Ten biodiversity indices were calculated.The results show that species richness in the different plot sizes was less than the actual value.The estimated value of the Simpson species diversity index was not significantly different from actual values for both canopy and forest floor diversity.The coefficient of variation of this index for the 1-ha sample plot showed the lowest amount across different plot sizes.Inverse Hill species diversity was insignificant difference across different plot sizes with an area greater than 0.500 ha.The modified Hill evenness index for the 1-ha sample size was a correct estimation of the 16-ha for both canopy and forest floor;however,the precision estimation was higher for the canopy layer.All plots greater than 0.250-ha provided an accurate estimation of the Camargo evenness index for forest floor species,but was inaccurate across different plot sizes for the canopy layer.The results indicate that the same plot size did not have the same effect across species diversity measurements.Our results show that correct estimation of species diversity measurements is related to the selection of appropriate indicators and plot size to increase the accuracy of the estimate so that the cost and time of biodiversity management may be reduced.
基金supported in part by the intramural research program of the US Department of Agriculture,National Institute of Food and Agriculture,Evans-Allen#1024525,and Capacity Building Grant#006531supported in part by the US National Science Foundation RII Track 2 FEC:Leveraging Intelligent Informatics and Smart Data for Improved Understanding of Northern Forest Ecosystem Resiliency(INSPIRES)#1920908by The Lyndhurst Foundation.
文摘Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.
基金National Natural Science Foundation of China(30070679)the Natural Science Foundation of Hubei Province(2004ABA138)+1 种基金the Key Technology R&D Programme Foundation of Hubei Province(2002AA301C43)the Hubei Health Bureau Research Programme Foundation(NX200427)
文摘Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.