期刊文献+
共找到905篇文章
< 1 2 46 >
每页显示 20 50 100
Iridium-based electrocatalysts for acidic oxygen evolution reaction
1
作者 Yanhui Yu Gai Li +10 位作者 Yutong Xiao Chi Chen Yuhang Bai Tianjiao Wang Jing Li Yingjie Hua Daoxiong Wu Peng Rao Peilin Deng Xinlong Tian Yuliang Yuan 《Journal of Energy Chemistry》 2025年第4期200-224,共25页
Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong... Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong acid in PEMWE systems pose a major challenge to the stability of electrocatalysts,and the development of efficient and corrosion-resistant catalysts is urgently needed.Currently,iridium(Ir)-based catalysts have gained great attention due to their promising activity and stability,while the extremely low reserves of Ir in the earth seriously hinder the commercialization of PEMWE.Therefore,a systematic understanding of the latest advances in Ir-based catalysts is necessary to guide their rational design to meet the industrial requirements.In this review,the general reaction mechanisms and advanced characterization techniques for mechanism recognition are first introduced.Afterwards,the systematic design strategies and performances of Ir-based catalysts,including metallic Ir,Ir oxides,and Ir-based perovskites,are summarized in detail.Finally,the conclusions,challenges,and prospects for Ir-based electrocatalysts are presented. 展开更多
关键词 ELECTROLYSIS Water splitting oxygen evolution reaction Ir-based catalysts oxygen evolution reaction mechanisms
在线阅读 下载PDF
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
2
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
3
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction
4
作者 Ming-Xing Chen Nian Liu +2 位作者 Zi-He Du Jing Qi Rui Cao 《电化学(中英文)》 北大核心 2025年第7期27-36,共10页
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec... The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction Ionic liquid Proton transfer CoSn(OH)_(6)nanocube
在线阅读 下载PDF
Metal‑organic framework‑templated construction of FeOOH@CoMoO_(4)/nickel foam heterostructure for enhanced oxygen evolution reaction
5
作者 YANG Shaohua GAO Na'na GONG Yaqiong 《无机化学学报》 北大核心 2025年第10期2175-2185,共11页
Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face o... Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2). 展开更多
关键词 template sacrifice approach zeolitic imidazolate framework-67 oxygen evolution reaction ELECTROCATALYSTS
在线阅读 下载PDF
2D coordination polymers of transition metals as catalysts for oxygen evolution reaction
6
作者 Mikhail N.Khrizanforov Anastasiia P.Samorodnova +5 位作者 Ilya A.Bezkishko Radis R.Gainullin Kirill V.Kholin Aidar T.Gubaidullin Ruslan P.Shekurov Vasili A.Miluykov 《Materials Reports(Energy)》 2025年第2期77-85,I0002,共10页
The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic... The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic study on isostructural 2D coordination polymers(CPs)based on 1,10-ferrocenediyl-bis(H-phosphinic)acid,with cobalt,manganese,and cadmium metals as electrocatalysts for OER.These polymers were synthesized via a facile solution reaction,yielding crystalline materials with excellent structural integrity.The electrocatalytic performance of CPs composites,prepared with carbon and phosphonium ionic liquid,was evaluated in 0.1 M KOH using a three-electrode system.Notably,the Co-and Cd-based CPs demonstrated exceptional OER activity,achieving an overpotential as low as 236–255 mV at 10 mA cm^(-2),surpassing those of many previously reported CP-based OER catalysts.Furthermore,these materials exhibited high stability over prolonged electrolysis,maintaining their activity without significant degradation.This work not only introduces a new class of ferrocenyl phosphinatebased CPs as highly active and durable OER catalysts but also provides valuable insights into their structureactivity relationships,paving the way for future advancements in electrocatalysis. 展开更多
关键词 oxygen evolution reaction 2D coordination polymers Ferrocenyl phosphinate ligands ELECTROCATALYSIS Water splitting Surface morphology OVERPOTENTIAL Catalytic stability
在线阅读 下载PDF
Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis
7
作者 Jiawei Ge Xian Wang +4 位作者 Heyuan Tian Hao Wan Wei Ma Jiangying Qu Junjie Ge 《Chinese Chemical Letters》 2025年第5期156-171,共16页
Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determin... Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determined by the oxygen evolution reaction(OER),a sluggish four-electron reaction with a high reaction barrier.Nowadays,iridium(Ir)-based catalysts are the catalysts of choice for OER due to their excellent activity and durability in acidic solution.However,its high price and unsatisfactory electrochemical performance severely restrict the PEMWE’s practical application.In this review,we initiate by introducing the current OER reaction mechanisms,namely adsorbate evolution mechanism and lattice oxygen mechanism,with degradation mechanisms discussed.Optimized strategies in the preparation of advanced Ir-based catalysts are further introduced,with merits and potential problems also discussed.The parameters that determine the performance of PEMWE are then introduced,with unsolved issues and related outlooks summarized in the end. 展开更多
关键词 Iridium-based catalysts oxygen evolution reaction Proton exchange membrane water ELECTROLYSIS Degradation mechanism Optimized strategies Practical application
原文传递
Triple-function Mn regulation of NiFe(oxy)hydroxide for oxygen evolution reaction
8
作者 Hui Wan Meng-Yuan Xie +10 位作者 Bo Li Jian-Hang Nie Tao Huang Lei Li Jing-Hui Shi Ming-Hua Xian Jia-Rong Huang Wangyu Hu Gui-Fang Huang Fei Gao Wei-Qing Huang 《Journal of Materials Science & Technology》 2025年第4期1-9,共9页
Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incor... Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization. 展开更多
关键词 Electrocatalysts Triple-function Heteroatoms adjusting DFT oxygen evolution reaction
原文传递
Lanthanum-based nanomaterials for oxygen evolution reaction
9
作者 Miao He Ping Wang +3 位作者 Jiasai Yao Yifei Li Senyao Meng Zhenxing Li 《Journal of Rare Earths》 2025年第6期1091-1099,I0001,共10页
Rare earth has a unique electronic structure and brings highly anticipated properties in light,electricity,heat and magnetism.Lanthanum is widely distributed among the rare earth elements and has a great potential for... Rare earth has a unique electronic structure and brings highly anticipated properties in light,electricity,heat and magnetism.Lanthanum is widely distributed among the rare earth elements and has a great potential for the electrocatalytic application.This paper reviews the common types and synthesis methods of lanthanum-based catalysts used in the electrocatalytic oxygen evolution reaction,and highlights the optimization of lanthanum-based catalysts.The electronic structure and active sites of the catalysts can be adjusted through atomic doping,interfacial modulation,and structural defects to enhance the OER.Further,the development of lanthanum-based catalyst is envisioned. 展开更多
关键词 Rare earths LANTHANUM oxygen evolution reaction Synthesis method ELECTROCATALYSIS
原文传递
Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction
10
作者 Weibin Shen Jie Liu +14 位作者 Gongyu Wen Shuai Li Binhui Yu Shuangyu Song Bojie Gong Rongyang Zhang Shibao Liu Hongpeng Wang Yao Wang Yujing Liu Huadong Yuan Jianming Luo Shihui Zou Xinyong Tao Jianwei Nai 《Chinese Chemical Letters》 2025年第7期636-640,共5页
Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise str... Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise structures is still a huge challenge due to the tedious procedure of precursor synthesis and anion selection.Here,a bimetallic(FeNi)nanowire self-assembled superstructure was synthesized using the Hoffmann rearrangement method,and then functionalized with four anions(P,Se,S,and O).Notably,the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst shows a high conductivity,enhances the adsorption of intermediate products,accelerates the rate-determining step,and consequently results to improved electrocatalytic performance.Using the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst exhibits enhanced performance with overpotential of 316mV at 10 mA/cm^(2),in stark contrast to Fe_(2) P/Ni_(2)P(357mV),Fe_(7)S_(8)/NiS(379 mV),and Fe_(3)O_(4)/NiO(464 mV).Moreover,the formation mechanism of superstructure and the relationship between electronegativities and electrocatalytic properties,are elucidated.Accordingly,this work provides an efficient approach to Hoffmann-type coordination polymer catalyst for oxygen evolution towards a near future. 展开更多
关键词 Self-assembly Anion modification Iron-nickel-based catalyst ELECTROCATALYSIS oxygen evolution reaction
原文传递
Toward the rational engineering of Mo-based materials for alkaline oxygen evolution reaction
11
作者 Qingcui Liu Wenhua Cheng +4 位作者 Yudai Huang Huan Zhou Juan Ding Weiwei Meng Zhouliang Tan 《Journal of Energy Chemistry》 2025年第7期751-767,共17页
A thorough understanding of the oxygen evolution reaction(OER)in Mo-based materials is crucial for the advancement of water-splitting technologies.However,the identification of the active phase in Mo-based systems rem... A thorough understanding of the oxygen evolution reaction(OER)in Mo-based materials is crucial for the advancement of water-splitting technologies.However,the identification of the active phase in Mo-based systems remains a subject of debate,largely due to the dissolution of molybdenum oxides in alkaline electrolytes.In this review,we provide a comprehensive overview of recent advances in the application of Mo-based materials for OER in alkaline media,with an emphasis on their diverse roles in catalysis.Various design strategies employed to optimize Mo-based materials are discussed,focusing on how these approaches influence their physicochemical properties and the specific effects of different design perspectives on their OER performance.Additionally,the structure-performance relationship underlying these materials is explored,offering insights into how structural modifications impact catalytic efficiency.Lastly,key challenges for Mo-based materials in OER applications are provided,and future research directions for further improving the efficacy of sustainable water-splitting technologies in alkaline environments are proposed. 展开更多
关键词 Mo-based materials Structure-performance relationship oxygen evolution reaction Alkaline media ELECTROCATALYSIS
在线阅读 下载PDF
Deciphering the role of ultra-low-loaded rhodium in NiFe-MIL-53 for superior oxygen evolution reaction
12
作者 Jinzhi Jia Jinhua Zhang +9 位作者 Kailu Guo Lanyue Zhang Gening Du Hao You Junfeng Huang Mudong Tu Hua Li Yong Peng Wei Dou Cailing Xu 《Journal of Energy Chemistry》 2025年第1期77-86,共10页
Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-5... Designing highly active and stable electrocatalysts of oxygen evolution reaction(OER)is one of the crucial challenges.In this study,a novel OER electrocatalyst,NiFe-MIL-53 modified with ultra-low rhodium(Rh@NiFe-MIL-53),is successfully prepared via the hydrothermal method.In-situ Raman spectroscopy and electrochemical impedance spectroscopy reveal that the doped Rh accelerates the phase transformation of NiFe-MIL-53 and the in-situ formed Rh@NiFeOOH is the actual active species.More importantly,the enhanced reversibility of electrochemical reconstruction between NiFeOOH and NiFe(OH)_(2)after doping Rh is beneficial for improving the electrochemical stability of the catalyst.X-ray photoelectron spectroscopy spectra show the strong electronic interaction between single-atom Rh and Ni/Fe in Rh@NiFeOOH.Furthermore,theoretical calculations confirm that the integration of single-atom Rh into the NiFeOOH successfully reduces the band gap,regulates the d-band center(εd),accelerates the charge transfer,and optimizes the adsorption behavior of oxygen-containing intermediates,thereby lowering the energy barrier of rate-determining steps.Consequently,the optimized Rh@NiFe-MIL-53 exhibits excellent OER activity(240 mV)with a small Tafel slope of 48.2 mV dec^(-1)and long-term durability(over1270 h at 10 m A cm^(-2)and 110 h at 200 mA cm^(-2)).This work presents a new perspective on designing highly efficient OER electrocatalysts. 展开更多
关键词 NiFe-MIL-53 RH Electrochemical reconstruction Catalytic mechanism oxygen evolution reaction
在线阅读 下载PDF
Designing durable and efficient Co-based catalysts for acidic oxygen evolution reaction in proton exchange membrane water electrolyzers
13
作者 Chuansheng He Jia Wang +3 位作者 Ren He Linlin Yang Yizhong Lu Andreu Cabot 《Journal of Energy Chemistry》 2025年第10期378-402,共25页
Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for int... Proton exchange membrane water electrolyzers(PEMWEs)are pivotal for efficient hydrogen production due to their high energy efficiency and ability to operate at high current densities,making them ideally suited for integration with renewable energy sources.Cobalt(Co)-based nanomaterials,characterized by diverse oxidation states,tunable electronic spin states,and hybrid orbitals,have emerged as promising non-noble metal alternatives to platinum group catalysts for accelerating the anodic oxygen evolution reaction(OER).Based on their inherent properties,this review provides a comprehensive overview of the latest developments in Co-based nanomaterials for acidic OER.The review begins by introducing the operational principles of PEMWEs,the underlying catalytic mechanisms,and the critical design considerations for OER catalysts.It then explores strategies to enhance the activity and stability of Co-based catalysts for acidic OER in PEMWEs,including the incorporation of corrosion-resistant metals or dispersion on acid-resistant supports to increase active surface area and stability;utilization of geometric structural engineering to improve structural integrity and active site efficiency;the optimization of reaction mechanisms to fine-tune catalytic pathways for enhanced stability and performance.The performance degradation mechanisms and metal leaching analysis for Co-based catalysts in PEMWE are also clarified.Finally,this review not only outlines the key challenges associated with Co-based catalysts for acidic OER but also proposes potential strategies to overcome these limitations,offering a roadmap for future advancements and practical implementation of PEMWE technology. 展开更多
关键词 Proton exchange membrane waterelectrolyzer COBALT oxygen evolution reaction HYDROGEN Water electrolysis
在线阅读 下载PDF
Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction
14
作者 Genxiang Wang Linfeng Fan +3 位作者 Peng Wang Junfeng Wang Fen Qiao Zhenhai Wen 《Chinese Chemical Letters》 2025年第4期216-220,共5页
Developing efficient electrocatalysts for oxygen evolution reaction(OER)is imperative to enhance the overall efficiency of electrolysis systems and rechargeable metal-air batteries operating in aqueous solutions.High-... Developing efficient electrocatalysts for oxygen evolution reaction(OER)is imperative to enhance the overall efficiency of electrolysis systems and rechargeable metal-air batteries operating in aqueous solutions.High-entropy materials,featured with their distinctive multi-component properties,have found extensive application as catalysts in electrochemical energy storage and conversion devices.However,synthesizing nanostructured high-entropy compounds under mild conditions poses a significant challenge due to the difficulty in overcoming the immiscibility of multiple metallic constituents.In this context,the current study focuses on the synthesis of an array of nano-sized high entropy sulfides tailored for OER via a facile precursor pyrolysis method at low temperature.The representative compound,Fe Co Ni Cu Mn Sx,demonstrates remarkable OER performance,achieving a current density of 10 m A/cm^(2) at an overpotential of merely 220 m V and excellent stability with constant electrolysis at 100 m A/cm^(2) for over 400 h.The in-situ formed metal(oxy)hydroxide has been confirmed as the real active sites and its exceptional performance can be primarily attributed to the synergistic effects arising from its multiple components.Furthermore,the synthetic methodology presented here is versatile and can be extended to the preparation of high entropy phosphides,which also present favorable OER performance.This research not only introduces promising non-noble electrocatalysts for OER but also offers a facile approach to expand the family of nano high-entropy materials,contributing significantly to the field of electrochemical energy conversion. 展开更多
关键词 High-entropy sulfides High-entropy phosphides oxygen evolution reaction Efficient synthesis Nano structure
原文传递
Ultrathin NiS_(2)nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction
15
作者 Chupeng Luo Keying Su +3 位作者 Shan Yang Yujia Liang Yawen Tang Xiaoyu Qiu 《Chinese Chemical Letters》 2025年第5期717-722,共6页
Shape control of nickel sulfide(NiS_(2))catalysts is beneficial for boosting their catalytic performances,which is vital to their practical application as a class of advanced non-noble electro-catalysts.However,precis... Shape control of nickel sulfide(NiS_(2))catalysts is beneficial for boosting their catalytic performances,which is vital to their practical application as a class of advanced non-noble electro-catalysts.However,precisely controlling the formation kinetics and fabricate ultrathin NiS_(2)nanostructures still remains challenge.Herein,we provide an injection rate-mediated method to fabricate ultrathin NiS_(2)nanocages(HNCs)with hierarchical walls,high-density lattice defects and abundant grain boundaries(GBs).Through mechanism analysis,we find the injection rate determines the concentration of S_(2)−in the steady state and thus control the growth pattern,leading to the formation of NiS_(2)HNCs at slow etching kinetics and NiCo PBA@NiS_(2)frames at fast etching kinetics,respectively.Benefiting from the ultrathin and hierarchical walls that minimize the mass transport restrictions,the high-density lattice defects and GBs that offer abundant unsaturated reaction sites,the NiS_(2)HNCs exhibit obviously enhanced electrocatalytic activity and stability toward OER,with overpotential of 255mV to reach 10mA/cm^(2)and a Tafel slope of 27.44mV/dec,surpassing the performances of NiCo PBA@NiS_(2)frames and commercial RuO_(2). 展开更多
关键词 Nickel sulfide Ultrathin nanocages Grain boundaries Kinetics control oxygen evolution reaction
原文传递
Suppressing catalyst reconstruction in neutral electrolyte: stabilizing Co-O-Mo point-to-point connection of cobalt molybdate by tungsten doping for oxygen evolution reaction
16
作者 Zhouzhou Wang Qiancheng Zhou +9 位作者 Li Luo Yaran Shi Haoran Li Chunchun Wang Kesheng Lin Chengsi Wang Libing Zhu Linyun Han Zhuo Xing Ying Yu 《Chinese Journal of Catalysis》 2025年第9期146-158,共13页
Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-dope... Neutral oxygen evolution reaction(OER)is a crucial half-reaction for electrocatalytic chemical production under mild condition,but with limited development due to low activity and poor stability.Herein,a tungsten-doped cobalt molybdate(WDCMO)catalyst was synthesized for efficient and durable OER under neutral electrolyte.It is demonstrated that catalyst reconstruction is suppressed by W doping,which stabilizes the Co-O-Mo point-to-point connection in CoMoO_(4) architecture and stimulates to a lower valence state of active sites over the surface phase.Thereby,the surface structure maintains to avoid compound dissolution caused by over-oxidation during OER.Meanwhile,the WDCMO catalyst promotes charge transfer and optimizes*OH intermediate adsorption,which improves reaction kinetics and intrinsic activity.Consequently,the WDCMO electrode exhibits an overpotential of 302 mV at 10 mA cm^(-2) in neutral electrolyte with an improvement of 182 mV compared with CoMoO4 electrode.Furthermore,W doping significantly improves the electrode stability from 50 h to more than 320 h,with a suppressive potential attenuation from 2.82 to 0.29 mV h^(-1).This work will shed new light on designing rational electrocatalysts for neutral OER. 展开更多
关键词 Neutral oxygen evolution reaction Suppressive catalyst reconstruction Cobalt molybdate Tungsten doping Stability
在线阅读 下载PDF
Recommended electrochemical measurement protocol for oxygen evolution reaction
17
作者 Chao Wu Ying Tang +5 位作者 Anqi Zou Junhua Li Haoyan Meng Feng Gao Jiagang Wu Xiaopeng Wang 《DeCarbon》 2025年第2期24-49,共26页
Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hinde... Developing highly active and stable oxygen evolution reaction(OER)catalysts necessitates the establishment of a comprehensive OER catalyst database.However,the absence of a standardized benchmarking protocol has hindered this progress.In this work,we present a systematic protocol for electrochemical measurements to thoroughly evaluate the activity and stability of OER electrocatalysts.We begin with a detailed introduction to constructing the electrochemical system,encompassing experimental setup and the selection criteria for electrodes and electrolytes.Potential contaminants originating from electrolytes,cells,and electrodes are identified and their impacts are discussed.We also examine the effects of external factors,such as temperature,magnetic fields,and natural light,on OER measurements.The protocol outlines operational mechanisms and recommended settings for various electrochemical techniques,including cyclic voltammetry(CV),potentiostatic electrochemical impedance spectroscopy(PEIS),Tafel slope analysis,and pulse voltammetry(PV).We summarize existing evaluation methodologies for assessing intrinsic activities and long-term stabilities of catalysts.Based on these discussions,we propose a comprehensive protocol for evaluating OER electrocatalysts’performance.Finally,we offer perspectives on advancing OER catalysts from laboratory research to industrial applications. 展开更多
关键词 Electrochemical measurement oxygen evolution reaction Intrinsic activities STABILITIES Protocols for OER measurement
在线阅读 下载PDF
Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction
18
作者 Fenglin Wang Chengwei Kuang +6 位作者 Zhicheng Zheng Dan Wu Hao Wan Gen Chen Ning Zhang Xiaohe Liu Renzhi Ma 《Chinese Chemical Letters》 2025年第6期714-719,共6页
The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vi... The sluggish reaction kinetics of the oxygen evolution reaction(OER)and methanol oxidation reaction(MOR)remain obstacles to the commercial promotion of water splitting and direct methanol fuel cells.Considering the vital role of noble metals in electrocatalytic activity,this work focuses on the rational synthesis of Ni-noble metal composite nanocatalysts for overcoming the drawbacks of high cost and susceptible oxidized surfaces of noble metals.The inherent catalytic activity is improved by the altered electronic structure and effective active sites of the catalyst induced by the size effect of noble metal clusters.In particular,a series of Ni-noble metal nanocomposites are successfully synthesized by partially introducing noble metal into Ni with porous interfacial defects derived from Ni-Al layered double hydroxide(LDH).The Ni_(10)Pd_(1)nanocomposite exhibits high OER catalytic activity with an overpotential of 0.279 V at 10 m A/cm^(2),surpassing Ni_(10)Ag_(1)and Ni_(10)Au_(1)counterparts.Furthermore,the average diameter of Pd clusters gradually increases from 5.57 nm to 44.44 nm with the increased proportion of doped Pd,leading to the passivation of catalytic activity due to the exacerbated surface oxidation of Pd in the form of Pd^(2+).After optimization,Ni_(10)Pd_(1)delivers significantly enhanced OER and MOR electroactivities and long-term stability compared to that of Ni_(2)Pd_(1),Ni_(1)Pd_(1)and Ni_(1)Pd_(2),which is conducive to the effective utilization of Pd and alleviation of surface oxidation. 展开更多
关键词 Size effect Pd cluster Mass activity oxygen evolution reaction Methanol oxidation reaction
原文传递
Defect modulation and in-situ exsolution in Y_(2)Ru_(2)O_(7)@NiFeP/Ru heterostructure for enhanced oxygen evolution reaction
19
作者 Eunsu Jang Jihoon Kim +2 位作者 Jangwoo Cho Jaeho Lee Jooheon Kim 《Rare Metals》 2025年第2期1014-1023,共10页
Pyrochlore oxide(Y_(2)Ru_(2)O_(7))has been identified as a promising catalyst for the oxygen evolution reaction(OER)in advanced green energy strategies.However,its electrochemical inertness necessitates the exploratio... Pyrochlore oxide(Y_(2)Ru_(2)O_(7))has been identified as a promising catalyst for the oxygen evolution reaction(OER)in advanced green energy strategies.However,its electrochemical inertness necessitates the exploration of an effective strategy to facilitate electronic modulation.This study proposes a surface modification approach involving the integration of defective NiFe(D-NiFe)nanoparticles onto a Y_(2)Ru_(2)O_(7)(YRO)support(YRO@D-NiFeP/Ru)using a Prussian blue analog(PBA).Numerous cyanide(CN)vacancies are generated through the oxidation treatment of the NiFe PBA grown on the YRO support,yielding a defective PBA precursor(YRO@D-PBA).Subsequent annealing facilitates the transformation to the D-NiFe nanoparticles on the YRO support(YRO@D-NiFeP/Ru),which augments the exposure of Ni3+active sites beneficial for the OER.Moreover,the reduction of Ru cations from YRO results in the exsolution of Ru nanoparticles,which promotes synergistic charge transfer from the nanoparticles to the interior of Y_(2)Ru_(2)O_(7).Consequently,YRO@D-NiFeP/Ru exhibits a remarkable voltage of 1.49 V at 10 mA·cm^(−2) and the lowest Tafel slope of 42.4 mV·dec^(−1).In addition,a Zn–air battery constructed with YRO@D-NiFeP/Ru exhibits an outstanding power density of 136.2 mW·cm^(−2) and high charge–discharge stability,confirming the applicability of YRO@D-NiFeP/Ru in metal-air batteries. 展开更多
关键词 Pyrochlore oxide structure Prussian blue analog Defect structure oxygen evolution reaction Znair battery
原文传递
Unveiling complexities:Reviews on insights into the mechanism of oxygen evolution reaction
20
作者 Pengxiang Zhang Jiawen Wang +7 位作者 Tianyu Yang Ruizhe Wang Ruofan Shen Zhikun Peng Yanyan Liu Xianli Wu Jianchun Jiang Baojun Li 《Chinese Journal of Catalysis》 2025年第5期48-83,共36页
The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the ... The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development. 展开更多
关键词 oxygen evolution reaction Catalytic mechanism Catalyst design Adsorption evolution mechanism Lattice oxygen mechanism
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部