The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment.This study presented a rapid and cost-effec...The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment.This study presented a rapid and cost-effective direct heating method for synthesizing MnO2 nanoflowers on coil substrates for the removal of organic pollutants.Traditional methods often require high power,expensive equipment,and long synthesis times.In contrast,the direct heating approach successfully synthesized MnO2 nanoflowers in just 10 min with a heating power of approximately 40 W·h after the heating power and duration were optimized.These nanoflowers effectively degraded 99%Rhodamine B in 60 min with consistent repeatability.The catalytic mechanisms are attributed to crystal defects in MnO2,which generate electrons to produce H2O2.Mn2+ions in the acidic solution further dissociate H2O2 molecules into hydroxyl radicals(·OH).The high efficiency of this synthesis method and the excellent reusability of MnO2 nanoflowers highlight their potential as a promising solution for the development of supporting MnO2 catalysts for organic dye removal applications.展开更多
In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N2 adsorption,H...In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N2 adsorption,HRTEM-EDS,H2-TPR,XPS characterization,as well as catalytic activity and durability tests for the catalytic combustion of chlorobenzene(CB)were conducted to explore the relationship between the structure and catalytic performance of the catalysts.It is revealed that cuCe(6:1)/MCM-41 has the highest activity and can completely catalyze the degradation of CB at 260℃.The reasons for the high activity of the catalysts are as follows:MCM-41,a type of mesoporous material which has large pore size and large specific surface area,is suitable as a catalyst carrier.The average diameter of nano-sized CuO and CeO2 particles is about 3-5 nm and adding CeO2 improves the dispersion of active component CuO,which are highly and evenly dispersed on the surface of MCM-41.Characterization results also explain why MCM-41 supported CuO-CeO2 with appropriate proportion can highly enhance the catalytic activity.The reason is that CeO2 acting as an oxygen-rich material can improve the mobility of oxygen species through continuous redox between Ce4^+and Ce3^+,and improve the catalytic performance of CuO for CB combustion.Besides,CuCe(6:1)/MCM-41 also displays good durability for CB combustion,both in the humid condition and in the presence of benzene,making it a promising catalytic material for the elimination of chlorinated VOCs.展开更多
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit...The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.展开更多
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
Nanosized 1 at% Sm^(3+)doped Y_(2)O_(3)powders were prepared by an ultrasound assisted sol-gel method.Y_(2)O_(3):Sm^(3+)powders crystallize in Y_(2)O_(3)pure cubic phase and XRD analysis shows that the as-used agitati...Nanosized 1 at% Sm^(3+)doped Y_(2)O_(3)powders were prepared by an ultrasound assisted sol-gel method.Y_(2)O_(3):Sm^(3+)powders crystallize in Y_(2)O_(3)pure cubic phase and XRD analysis shows that the as-used agitation protocol affects strongly the crystallite’s shape and mean size.The recorded emission spectra under λ_(em)=600 nm exhibit two absorption bands;the first one is assigned to O^(2-)→Sm^(3+)charge transfer state(CTS) with a maximum absorption at 223 nm,and the second is due to intraconfigurational transition 4f^(5)-4f^(5) of Sm^(3+) with a maximum absorption at 407 nm.The 223 and 407 nm transitions are attributed to characteristics intra-configurational transitions of Sm^(3+).All emission spectra are dominated by reddish/orange luminescence located at 606 nm and assigned to ^(4)G_(5/2)→^(6)H_(7/2) transition.It is found that the photoluminescence intensity of samples obtained under excitation at 407 nm is 60 times smaller than that obtained under 223 nm excitation.Decay time measurements of the ^(4)G_(5/2)→^(6)H_(7/2) luminescence transition indicate that decay time of nano-sized powder is significantly shorter than bulk material one.展开更多
基金supported by Ministry of Higher Education,Malaysia,through the Fundamental Research Grant Scheme(FRGS)(Grant No.FRGS/1/2020/TK0/USM/02/27)。
文摘The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment.This study presented a rapid and cost-effective direct heating method for synthesizing MnO2 nanoflowers on coil substrates for the removal of organic pollutants.Traditional methods often require high power,expensive equipment,and long synthesis times.In contrast,the direct heating approach successfully synthesized MnO2 nanoflowers in just 10 min with a heating power of approximately 40 W·h after the heating power and duration were optimized.These nanoflowers effectively degraded 99%Rhodamine B in 60 min with consistent repeatability.The catalytic mechanisms are attributed to crystal defects in MnO2,which generate electrons to produce H2O2.Mn2+ions in the acidic solution further dissociate H2O2 molecules into hydroxyl radicals(·OH).The high efficiency of this synthesis method and the excellent reusability of MnO2 nanoflowers highlight their potential as a promising solution for the development of supporting MnO2 catalysts for organic dye removal applications.
基金Project supported by the National Natural Science Foundation of China(21577094)Zhejiang Public Welfare Technology Research Project(LGG19B070003)the Foundation of Science and Technology of Shaoxing City(2018C10019)。
文摘In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N2 adsorption,HRTEM-EDS,H2-TPR,XPS characterization,as well as catalytic activity and durability tests for the catalytic combustion of chlorobenzene(CB)were conducted to explore the relationship between the structure and catalytic performance of the catalysts.It is revealed that cuCe(6:1)/MCM-41 has the highest activity and can completely catalyze the degradation of CB at 260℃.The reasons for the high activity of the catalysts are as follows:MCM-41,a type of mesoporous material which has large pore size and large specific surface area,is suitable as a catalyst carrier.The average diameter of nano-sized CuO and CeO2 particles is about 3-5 nm and adding CeO2 improves the dispersion of active component CuO,which are highly and evenly dispersed on the surface of MCM-41.Characterization results also explain why MCM-41 supported CuO-CeO2 with appropriate proportion can highly enhance the catalytic activity.The reason is that CeO2 acting as an oxygen-rich material can improve the mobility of oxygen species through continuous redox between Ce4^+and Ce3^+,and improve the catalytic performance of CuO for CB combustion.Besides,CuCe(6:1)/MCM-41 also displays good durability for CB combustion,both in the humid condition and in the presence of benzene,making it a promising catalytic material for the elimination of chlorinated VOCs.
文摘The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
基金supported by Nuclear Research Center of Algiers(CRNA),Department of Laser,Luminescence Laboratory。
文摘Nanosized 1 at% Sm^(3+)doped Y_(2)O_(3)powders were prepared by an ultrasound assisted sol-gel method.Y_(2)O_(3):Sm^(3+)powders crystallize in Y_(2)O_(3)pure cubic phase and XRD analysis shows that the as-used agitation protocol affects strongly the crystallite’s shape and mean size.The recorded emission spectra under λ_(em)=600 nm exhibit two absorption bands;the first one is assigned to O^(2-)→Sm^(3+)charge transfer state(CTS) with a maximum absorption at 223 nm,and the second is due to intraconfigurational transition 4f^(5)-4f^(5) of Sm^(3+) with a maximum absorption at 407 nm.The 223 and 407 nm transitions are attributed to characteristics intra-configurational transitions of Sm^(3+).All emission spectra are dominated by reddish/orange luminescence located at 606 nm and assigned to ^(4)G_(5/2)→^(6)H_(7/2) transition.It is found that the photoluminescence intensity of samples obtained under excitation at 407 nm is 60 times smaller than that obtained under 223 nm excitation.Decay time measurements of the ^(4)G_(5/2)→^(6)H_(7/2) luminescence transition indicate that decay time of nano-sized powder is significantly shorter than bulk material one.