针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现...针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。展开更多
文摘针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。