The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance o...The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties,making it difficult to achieve optimal GNSS/INS integration.Dealing with non-Gaussian noise remains a significant challenge in filter development today.Therefore,the maximum correntropy criterion(MCC)is utilized in EKFs to manage heavytailed measurement noise.However,its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored.In this paper,we extend correntropy from using a single kernel to a multi-kernel approach.This leads to the development of a multi-kernel maximum correntropy extended Kalman filter(MKMC-EKF),which is designed to effectively manage multivariate non-Gaussian noise and disturbances.Further,theoretical analysis,including advanced stability proofs,can enhance understanding,while hybrid approaches integrating MKMC-EKF with particle filters may improve performance in nonlinear systems.The MKMC-EKF enhances estimation accuracy using a multi-kernel bandwidth approach.As bandwidth increases,the filter’s sensitivity to non-Gaussian features decreases,and its behavior progressively approximates that of the iterated EKF.The proposed approach for enhancing positioning in navigation is validated through performance evaluations,which demonstrate its practical applications in real-world systems like GPS navigation and measuring radar targets.展开更多
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie...Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.展开更多
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n...Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.展开更多
基金the support from National Science and Technology Council,Taiwan under grant numbers NSTC 113-2811-E-019-001 and NSTC 113-2221-E-019-059.
文摘The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties,making it difficult to achieve optimal GNSS/INS integration.Dealing with non-Gaussian noise remains a significant challenge in filter development today.Therefore,the maximum correntropy criterion(MCC)is utilized in EKFs to manage heavytailed measurement noise.However,its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored.In this paper,we extend correntropy from using a single kernel to a multi-kernel approach.This leads to the development of a multi-kernel maximum correntropy extended Kalman filter(MKMC-EKF),which is designed to effectively manage multivariate non-Gaussian noise and disturbances.Further,theoretical analysis,including advanced stability proofs,can enhance understanding,while hybrid approaches integrating MKMC-EKF with particle filters may improve performance in nonlinear systems.The MKMC-EKF enhances estimation accuracy using a multi-kernel bandwidth approach.As bandwidth increases,the filter’s sensitivity to non-Gaussian features decreases,and its behavior progressively approximates that of the iterated EKF.The proposed approach for enhancing positioning in navigation is validated through performance evaluations,which demonstrate its practical applications in real-world systems like GPS navigation and measuring radar targets.
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
基金financially supported by the National Natural Science Foundation of China (41774129, 41904116)the Foundation Research Project of Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation (MTy2019-20)。
文摘Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.
基金supported by the National Natural Science Foundation of China(6100115361271415)+2 种基金the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)
文摘Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment.
基金supported by the National Key Research and Development Program of China(No.2021YFA1500703 to Ganglong Cui)Distinguished Professorship of Chang Jiang Scholars of Ministry of Education of China(Ganglong Cui)+1 种基金the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China(No.22233001 to Ganglong Cui,No.22003043 to Xiang-Yang Liu)。