Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food mater...Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.展开更多
The integration of wind power and natural gas for hydrogen production forms a Green and Blue Hydrogen Integrated Energy System(GBH-IES),which is a promising cogeneration approach characterized by multienergy complemen...The integration of wind power and natural gas for hydrogen production forms a Green and Blue Hydrogen Integrated Energy System(GBH-IES),which is a promising cogeneration approach characterized by multienergy complementarity,flexible dispatch,and efficient utilization.This system can meet the demands for electricity,heat,and hydrogen while demonstrating significant performance in energy supply,energy conversion,economy,and environment(4E).To evaluate the GBH-IES system effectively,a comprehensive performance evaluation index system was constructed from the 4E dimensions.The fuzzy DEMATEL method was used to quantify the causal relationships between indicators,establishing a scientific input-output assessment system.The DEA model was then employed for preliminary performance evaluation of the hydrogen storage system,followed by the entropy weight TOPSIS method to enhance the accuracy and reliability of the assessment results.The study also conducted a comprehensive benefit evaluation and sensitivity analysis for different cases involving blue hydrogen,green hydrogen,and their synergistic effects under varying carbon emission factors(CEFs)and hydrogen blending ratios(HBRs).The results indicate that combining green and blue hydrogen can achieve higher comprehensive benefits for the hydrogen storage system,providing valuable insights for hydrogen storage development and demonstrating the effectiveness of themulti-criteria decision-making methods used.展开更多
Here we report on simultaneous lidar observations of sporadic Ni(Nis)layers and sporadic Na(Nas)layers in the atmosphere over Yanqing,Beijing(40.42°N,116.02°E)from April 2019 to October 2022.During 343 night...Here we report on simultaneous lidar observations of sporadic Ni(Nis)layers and sporadic Na(Nas)layers in the atmosphere over Yanqing,Beijing(40.42°N,116.02°E)from April 2019 to October 2022.During 343 nights of observation,68 Nis and 56 Nas were observed.The seasonal variation of Nis and Nas was also obtained,with the highest occurrence of Nis being in July(43%)and that of Nas being in June(61%).We found that the seasonal variation of Nis is similar to that of Nas and that both occur more frequently in summer than in winter.In addition,we found 23 events in which Nis and Nas occur simultaneously.The average peak altitude of Nas is approximately 1 km higher than that of Nis,and the peak density ratio of Nas to Nis is approximately 5,which is half the density ratio of the two main layers.Additionally,the strength factor for Nas is smaller than that for Nis.Through data analysis of sporadic E layers(Es),we found that Nis and Nas has a significant correlation with Es.The neutralization rates of Ni^(+)/Na^(+)were calculated according to the dissociative recombination reaction of Ni^(+)/Na^(+)and the WACCM-Ni(Whole Atmosphere Community Climate Model of Ni).The production rates of Ni and Na were estimated to be approximately 1:4.4,which is consistent with the density ratio of Nis to Nas.The results showed that the neutralization reaction of Ni+,Na+,and electrons in Es is the main reason for the formation of the Nis layer and the Nas layer.展开更多
文摘Food Science of Animal Products(ISSN:2958-4124,e-ISSN:2958-3780)is a peer-reviewed,open access international journal that publishes the latest research findings in the field of animal-origin foods,involving food materials such as meat,aquatic products,milk,eggs,animal offals and edible insects.
基金The Key Research andDevelopment Project of Xinjiang Uygur Autonomous Region,with the grant number 2024B04025The General Programof Natural Science Foundation of Xinjiang Uygur Autonomous Region,with the grant number 2022D01C366.
文摘The integration of wind power and natural gas for hydrogen production forms a Green and Blue Hydrogen Integrated Energy System(GBH-IES),which is a promising cogeneration approach characterized by multienergy complementarity,flexible dispatch,and efficient utilization.This system can meet the demands for electricity,heat,and hydrogen while demonstrating significant performance in energy supply,energy conversion,economy,and environment(4E).To evaluate the GBH-IES system effectively,a comprehensive performance evaluation index system was constructed from the 4E dimensions.The fuzzy DEMATEL method was used to quantify the causal relationships between indicators,establishing a scientific input-output assessment system.The DEA model was then employed for preliminary performance evaluation of the hydrogen storage system,followed by the entropy weight TOPSIS method to enhance the accuracy and reliability of the assessment results.The study also conducted a comprehensive benefit evaluation and sensitivity analysis for different cases involving blue hydrogen,green hydrogen,and their synergistic effects under varying carbon emission factors(CEFs)and hydrogen blending ratios(HBRs).The results indicate that combining green and blue hydrogen can achieve higher comprehensive benefits for the hydrogen storage system,providing valuable insights for hydrogen storage development and demonstrating the effectiveness of themulti-criteria decision-making methods used.
基金supported by the Specialized Research Fund for State Key Laboratories,Chinese Meridian Project,the Specialized Research Fund for the State Key Laboratory of Solar Activity and Space Weather,postgraduate Education Reform and Quality Improvement Project of Henan Province(Grant No.YJS2024JD32)Natural Science Foundation Project of Henan Province(Grant No.242300420253)National Natural Science Foundation of China for Young Scientists(Grant No.42504156)funding.
文摘Here we report on simultaneous lidar observations of sporadic Ni(Nis)layers and sporadic Na(Nas)layers in the atmosphere over Yanqing,Beijing(40.42°N,116.02°E)from April 2019 to October 2022.During 343 nights of observation,68 Nis and 56 Nas were observed.The seasonal variation of Nis and Nas was also obtained,with the highest occurrence of Nis being in July(43%)and that of Nas being in June(61%).We found that the seasonal variation of Nis is similar to that of Nas and that both occur more frequently in summer than in winter.In addition,we found 23 events in which Nis and Nas occur simultaneously.The average peak altitude of Nas is approximately 1 km higher than that of Nis,and the peak density ratio of Nas to Nis is approximately 5,which is half the density ratio of the two main layers.Additionally,the strength factor for Nas is smaller than that for Nis.Through data analysis of sporadic E layers(Es),we found that Nis and Nas has a significant correlation with Es.The neutralization rates of Ni^(+)/Na^(+)were calculated according to the dissociative recombination reaction of Ni^(+)/Na^(+)and the WACCM-Ni(Whole Atmosphere Community Climate Model of Ni).The production rates of Ni and Na were estimated to be approximately 1:4.4,which is consistent with the density ratio of Nis to Nas.The results showed that the neutralization reaction of Ni+,Na+,and electrons in Es is the main reason for the formation of the Nis layer and the Nas layer.