Atomic surfaces are strictly required by high-performance devices of diamond.Nevertheless,diamond is the hardest material in nature,leading to the low material removal rate(MRR)and high surface roughness during machin...Atomic surfaces are strictly required by high-performance devices of diamond.Nevertheless,diamond is the hardest material in nature,leading to the low material removal rate(MRR)and high surface roughness during machining.Noxious slurries are widely used in conventional chemical mechanical polishing(CMP),resulting in the possible pollution to the environment.Moreover,the traditional slurries normally contain more than four ingredients,causing difficulties to control the process and quality of CMP.To solve these challenges,a novel green CMP for single crystal diamond was developed,consisting of only hydrogen peroxide,diamond abrasive and Prussian blue(PB)/titania catalyst.After CMP,atomic surface is achieved with surface roughness Sa of 0.079 nm,and the MRR is 1168 nm·h^(-1).Thickness of damaged layer is merely 0.66 nm confirmed by transmission electron microscopy(TEM).X-ray photoelectron spectroscopy,electron paramagnetic resonance and TEM reveal that·OH radicals form under ultraviolet irradiation on PB/titania catalyst.The·OH radicals oxidize diamond,transforming it from monocrystalline to amorphous atomic structure,generating a soft amorphous layer.This contributes the high MRR and formation of atomic surface on diamond.The developed novel green CMP offers new insights to achieve atomic surface of diamond for potential use in their high-performance devices.展开更多
The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental...The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.展开更多
The milling stability of thin-walled components is an important issue in the aviation manufacturing industry,which greatly limits the removal rate of a workpiece.However,for a thin-walled workpiece,the dynamic charact...The milling stability of thin-walled components is an important issue in the aviation manufacturing industry,which greatly limits the removal rate of a workpiece.However,for a thin-walled workpiece,the dynamic characteristics vary at different positions.In addition,the removed part also has influence on determining the modal parameters of the workpiece.Thus,the milling stability is also time-variant.In this work,in order to investigate the time variation of a workpiece's dynamic characteristics,a new computational model is firstly derived by dividing the workpiece into a removed part and a remaining part with the Ritz method.Then,an updated frequency response function is obtained by Lagrange's equation and the corresponding modal parameters are extracted.Finally,multi-mode stability lobes are plotted by the different quadrature method and its accuracy is verified by experiments.The proposed method improves the computational efficiency to predict the time-varying characteristics of a thin-walled workpiece.展开更多
The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwe...The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically.展开更多
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int...Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and ...In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and stiffness reduction during the machining process depend on the material removal sequence.The essence of the stress redistribution is releasing the initial elastic strain energy.In the present study,the influence of the material removal sequence on the energy release is studied.Moreover,a novel optimization method is proposed for the material removal sequence.In order to evaluate the performance of the proposed method,the mechanism of the machining distortion is firstly analyzed based on the energy principle.Then a calculative model for the machining distortion of long beam parts is established accordingly.Moreover,an energy parameter related to the bending distortion and the procedure of the material removal sequence optimization is defined.Finally,the bending distortion analysis and material removal sequence optimization are performed on a long beam with a Z-shaped cross-section.Furthermore,simulation and experiments are carried out.The obtained results indicate that the optimized sequence results in a low distortion fluctuation and decreases the bending distortion.展开更多
Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physica...Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physical properties,which may fit for particular application purposes.This paper presents an investigation of the material removal and associated subsurface defects in a set of scratching tests on the C face and Si face of 4H-SiC and 6H-SiC materials using molecular dynamics simulations.The investigation reveals that the sample material deformation consists of plastic,amorphous transformations and dislocation slips that may be prone to brittle split.The results showed that the material removal at the C face is more effective with less amorphous deformation than that at the Si face.Such a phenomenon in scratching relates to the dislocations on the basal plane(0001)of the SiC crystal.Subsurface defects were reduced by applying scratching cut depths equal to integer multiples of a half molecular lattice thickness,which formed a foundation for selecting machining control parameters for the best surface quality.展开更多
In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,...In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features.展开更多
The paper firstly analyzes the influence factor on material removal rate of curved optical work-pieces in the bonnet polishing. Then the experiments are conducted to reveal the effects of several polishing parameters ...The paper firstly analyzes the influence factor on material removal rate of curved optical work-pieces in the bonnet polishing. Then the experiments are conducted to reveal the effects of several polishing parameters on the material removal rate when the spherical optical glasses are polished with different curvature radius, such as the decrement of the bonnet, the rotational speed of the bonnet and the curvature radius of the work-piece's surface using a bonnet trial-manufacturing machine developed by our assignment groups. In the end, the curvilinear relationships between these parameters and the material removal rate are acquired and the laws of the effects on material removal rate in bonnet polishing by several parameters are given. When the spherical-pieces are polished with smaller curvature radius, it is not proportional to either bonnet decrement or bonnet rotational speed as described by the Preston equation although the removal rate increases as the relative velocity or the applied pressure increases. Therefore, for the purpose of calculating more accurately the material removal of the spherical work-pieces, the Preston equation should be modified and studied further.展开更多
Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials ...Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials in vibration-assisted grinding are not well understood.In order to elucidate the mechanism of abrasive scratching during vibration-assisted grinding,a kinematic model of vibration scratching was developed.The influence of process parameters on the evolution of vibration scratches to indentation or straight scratches is revealed by displacement metrics and velocity metrics.Indentation,scratch and vibration scratch experiments were performed on quartz glass,and the results showed that the vibration scratch cracks are a combination of indentation cracks and scratch cracks.Vibration scratch cracks change from indentation cracks to scratch cracks as the indenter moves from the entrance to the exit of the workpiece or as the vibration frequency changes from high to low.A vertical vibration scratch stress field model is established for the first time,which reveals that the maximum principal stress and tensile stress distribution is the fundamental cause for inducing the transformation of the vibration scratch cracking system.This model provides a theoretical basis for understanding of the mechanism of material damage and crack propagation during vibration-assisted grinding.展开更多
Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has...Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has rarely been the focus of research. As such, it is necessary to study the material removal mechanism of glass-ceramics under consecutive incremental loading, which more closely reflects the actual grinding process. In this paper,to analyze the plastic deformation and residual stress of lithium aluminosilicate(LAS) glass-ceramics, a finite element model is established based on the Drucker–Prager yield criterion for ductile regimes. A nano-scratch test was also conducted and the test results show that both the residual depth and residual stress increase with an increase in the number of increments, and that consecutive incremental loading promotes the plastic deformation of glass-ceramics and increases the residual stress of the material in the ductile-regime process. These findings provide guidance for achieving higher dimensional accuracy in the actual grinding of glass-ceramics parts.展开更多
Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechani...Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining.In this study,single-and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter.The material removal characteristics and cracks under different planes,indenter directions,normal loading rates,and scratch intervals were analyzed using SEM,FIB,and a 3D profilometer,and the mechanisms of material removal and crack propagation were studied.The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining.The normal loading rate had little effect on the scratch depth,but a lower loading rate increased the ductile region and critical depth of transition.Additionally,the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval,the status of scratches and chips changed,and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation.The calculated and experimental values of the median crack depth also showed good consistency and relativity.Therefore,this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.展开更多
Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the ...Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the progress of electrochemical dissolution.This research demonstrates for the first time a jet-electrolytic plasma micromachining(Jet-EPM)method to overcome this problem.Specifically,an electrolytic plasma is intentionally induced at the jet-material contact area by applying a potential high enough to surmount the surface boundary layer(such as a passive film or gas bubble)and enable material removal.Compared to traditional EJM,introducing plasma in the electrochemical jet system leads to considerable differences in machining performance due to the inclusion of plasma reactions.In this work,the implementation of Jet-EPM for fabricating microstructures in the semiconductor material 4H-SiC is demonstrated,and the machining principle and characteristics of Jet-EPM,including critical parameters and process windows,are comprehensively investigated.Theoretical modeling and experiments have elucidated the mechanisms of plasma ignition/evolution and the corresponding material removal,showing the strong potential of Jet-EPM for micromachining chemically resistant materials.The present study considerably augments the range of materials available for processing by the electrochemical jet technique.展开更多
The mechanical characters of CdZnTe crystal were investigated by nanoscratch tests, and the effects of mechanical anisotropy on the material removal rate and surface quality were studied by polishing tests. There is a...The mechanical characters of CdZnTe crystal were investigated by nanoscratch tests, and the effects of mechanical anisotropy on the material removal rate and surface quality were studied by polishing tests. There is a peak of frictional coefficient at the early stage of scratch, and increasing the vertical force will result in the increase of peak value correspondingly. The fluctuation phenomenon of frictional coefficient is generated at high vertical force. The lateral forces show the apparent twofold and threefold symmetries on (110) and (111) planes, respectively. To obtain high surface quality, low polishing pressure and hard direction (〈 T10 〉 directions on (110) plane and 〈 112 〉 directions on (111) plane) should be selected, and to achieve high material removal rate, high polishing pressure and soft direction (〈001〉 directions on (110) plane and 〈 121 〉 directions on (111) plane) should be selected.展开更多
Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials, which is an original method to process the cylindrical ceramics materials or hole along its ax...Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials, which is an original method to process the cylindrical ceramics materials or hole along its axis. The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process, and realized high efficiency, low-cost process of engineering ceramics materials. Compared with high speed-deep grinding machining, this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost. In addition, removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed, and the processed part is seldom destroyed, only by adjusting the axial force to control the length of transverse cracks.展开更多
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu...To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.展开更多
The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approac...The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approach. There are two honing characteristics different from grinding, the honing incidental tensile stresses and the crosshatch pattern. The stresses may influence material removal of brittle ceramics with lower tensile strength. In addition, the criss-cross cutting pattern on a bore known as crosshatch may also have its effect on the material removal of ceramics. The material removal of alumina is analyzed on the basis of honing characteristics, honing incidental tensile stresses and crosshatch pattern. By means of indentation fracture mechanics of brittle solids, the theoretical analysis of stress intensity factor and the crack response prove that honing incidental tensile stresses can increase the stress intensity factor of honing cracks and decrease the grinding stresses. So, the fracture criterion for crack propagation can be met easily. Therfore, it is possible to machine ceramic materials with small grinding forces in honing processes. The alumina honing experiments show that material at crosshatch intersecting point is removed by way of chipping which is similar to the edge-crumbled of ceramics. For brittle ceramics with lower tensile strength, such as Al 2O 3, SiO 2, the influences of the honing incidental tensile stresses and the crosshatch pattern on material removal are bigger than that of ceramics with relative higher toughness, such as ZrO 2 and Si 3N 4. Hence, the honing of Al 2O 3, SiO 2, is superior in cutting ability to the grinding. The large stock removal of brittle ceramic materials can be obtained through higher honing pressures. The increase in honing pressures can increase intensity factor of honing cracks, decrease the grinding stresses, and remarkably improve material removal rate. The researches show that honing is an efficient bore machining operation for brittle ceramics.展开更多
Recently,there has been an investigation of polishing processes that has considered new ultra-precision polishing technology for micro parts and optical parts such as those with aspheric and complex shapes.One suitabl...Recently,there has been an investigation of polishing processes that has considered new ultra-precision polishing technology for micro parts and optical parts such as those with aspheric and complex shapes.One suitable means of polishing complex shapes is to use a jet of abrasive fluid.However,aerodynamic disturbances and radial spreading are generated by the unstable polishing process of the jet on the surface of the workpiece when it is being polished.A method of jet stabilization has been proposed in which the original nozzle form of a jet of magnetorheological(MR)fluid contains abrasive particles that are magnetized using a magnetic.This paper details the design of an MR jet polishing system that uses an electromagnet,a nozzle,and a hydraulic unit to stabilize a slurry jet based on MR fluid, Second,for silica glass,the polishing spot and section profile are analyzed and the effect of the MR fluid jet polishing process is evaluated.The results of the experiment show that the removal profile is W-shaped and that,in this case,a stable can be proof of a distance of several tens of millimeters from the nozzle.Such results show the possibility of applying the proposed polishing method using MR fluids in ultra-precision micro and optical parts production processes. MR jet polishing shows great potential for use as a new type of precision surface polishing technology.In particular,this is a highly valuable process for the polishing of complex shapes such as micro parts,concaves parts,and cavities.展开更多
Water dissolution ultraprecision continuous polishing is a nontraditional machining method specifically designed for water-soluble crystals.The aim of this study is primarily to reduce the surface roughness for small ...Water dissolution ultraprecision continuous polishing is a nontraditional machining method specifically designed for water-soluble crystals.The aim of this study is primarily to reduce the surface roughness for small sizes from an experimental standpoint.A trajectory uniformity simulation analysis is carried out for a consistent material removal.A material removal model is developed based on the water dissolution principle and kinematic analysis.Numerical simulations of single-and multiple-water-core polishing trajectories are performed to explore the influences of the processing parameters such as movement form,number of water cores,speed ratio,polishing time,and period ratio on the material removal uniformity.The material removal rate is calculated according to the Preston equation.The trajectory density nonuniformity is utilized to evaluate the global uniformity of the trajectory distributions and optimize the processing parameters for a better material removal uniformity.Verification experiments are conducted on a large-size ultraprecision continuous polisher using a typical potassium dihydrogen phosphate(KDP)crystal with a water-soluble structure.The edge collapse is improved from 51.499μm to 1.477μm by trajectory uniformity optimization.The changing trends of line profile variations in the validation experiment and simulation are similar.An ultrasmooth surface of a 180 mm×180 mm KDP crystal with a surface roughness root mean square of 1.718 nm is obtained after water dissolution ultraprecision continuous polishing.This study provides a comprehensive method for evaluation of material removal uniformity,which is valuable for the realization of high-quality machining for water-soluble crystals.展开更多
基金financial support from the National Key Research and Development Program of China(2018YFA0703400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001021)+1 种基金the Ninth China Association for Science and Technology Youth Talent Lift Project Support Plan(KYZ015324002)the Changjiang Scholars Program of Chinese Ministry of Education。
文摘Atomic surfaces are strictly required by high-performance devices of diamond.Nevertheless,diamond is the hardest material in nature,leading to the low material removal rate(MRR)and high surface roughness during machining.Noxious slurries are widely used in conventional chemical mechanical polishing(CMP),resulting in the possible pollution to the environment.Moreover,the traditional slurries normally contain more than four ingredients,causing difficulties to control the process and quality of CMP.To solve these challenges,a novel green CMP for single crystal diamond was developed,consisting of only hydrogen peroxide,diamond abrasive and Prussian blue(PB)/titania catalyst.After CMP,atomic surface is achieved with surface roughness Sa of 0.079 nm,and the MRR is 1168 nm·h^(-1).Thickness of damaged layer is merely 0.66 nm confirmed by transmission electron microscopy(TEM).X-ray photoelectron spectroscopy,electron paramagnetic resonance and TEM reveal that·OH radicals form under ultraviolet irradiation on PB/titania catalyst.The·OH radicals oxidize diamond,transforming it from monocrystalline to amorphous atomic structure,generating a soft amorphous layer.This contributes the high MRR and formation of atomic surface on diamond.The developed novel green CMP offers new insights to achieve atomic surface of diamond for potential use in their high-performance devices.
文摘The stress intensity factors and stress conditions of machining cracks are analyzed by fracture mechanics on the basis of honing characteristics and of brittle ceramic mechanical behavior.Because the honing incidental tensile stresses effectively decrease the critical grinding stresses and increase the stress intensity factors of machining cracks,the honing process can be carried out easily.The results show that honing can be an efficient machining method for brittle materials.
基金the National Natural Science Foundation of China(No.51575319)the Young Scholars Program of Shandong University(No.2015WLJH31)+1 种基金the Major National Science and Technology Project(No.2014ZX04012-014)the Tai Shan Scholar Foundation(No.TS20130922)
文摘The milling stability of thin-walled components is an important issue in the aviation manufacturing industry,which greatly limits the removal rate of a workpiece.However,for a thin-walled workpiece,the dynamic characteristics vary at different positions.In addition,the removed part also has influence on determining the modal parameters of the workpiece.Thus,the milling stability is also time-variant.In this work,in order to investigate the time variation of a workpiece's dynamic characteristics,a new computational model is firstly derived by dividing the workpiece into a removed part and a remaining part with the Ritz method.Then,an updated frequency response function is obtained by Lagrange's equation and the corresponding modal parameters are extracted.Finally,multi-mode stability lobes are plotted by the different quadrature method and its accuracy is verified by experiments.The proposed method improves the computational efficiency to predict the time-varying characteristics of a thin-walled workpiece.
基金Supported by Young Teacher Independent Research Subject of Yanshan University of China(Grant No.15LGA002)
文摘The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically.
文摘Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金the National Natural Science Foundation of China(No.51405226)。
文摘In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and stiffness reduction during the machining process depend on the material removal sequence.The essence of the stress redistribution is releasing the initial elastic strain energy.In the present study,the influence of the material removal sequence on the energy release is studied.Moreover,a novel optimization method is proposed for the material removal sequence.In order to evaluate the performance of the proposed method,the mechanism of the machining distortion is firstly analyzed based on the energy principle.Then a calculative model for the machining distortion of long beam parts is established accordingly.Moreover,an energy parameter related to the bending distortion and the procedure of the material removal sequence optimization is defined.Finally,the bending distortion analysis and material removal sequence optimization are performed on a long beam with a Z-shaped cross-section.Furthermore,simulation and experiments are carried out.The obtained results indicate that the optimized sequence results in a low distortion fluctuation and decreases the bending distortion.
基金financial support from National Natural Science Foundation of China(Grant No.51835004 and 51575197)Huaqiao University International Cultivation Program for Outstanding Postgraduates and Subsidized Projec for Postgraduates’Innovative Fund in Scientific Research of Huaqiao University(No.18011080010)。
文摘Single crystal silicon carbide(SiC)is widely used for optoelectronics applications.Due to the anisotropic characteristics of single crystal materials,the C face and Si face of single crystal SiC have different physical properties,which may fit for particular application purposes.This paper presents an investigation of the material removal and associated subsurface defects in a set of scratching tests on the C face and Si face of 4H-SiC and 6H-SiC materials using molecular dynamics simulations.The investigation reveals that the sample material deformation consists of plastic,amorphous transformations and dislocation slips that may be prone to brittle split.The results showed that the material removal at the C face is more effective with less amorphous deformation than that at the Si face.Such a phenomenon in scratching relates to the dislocations on the basal plane(0001)of the SiC crystal.Subsurface defects were reduced by applying scratching cut depths equal to integer multiples of a half molecular lattice thickness,which formed a foundation for selecting machining control parameters for the best surface quality.
文摘In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features.
基金Foundation of Harbin Institute of Technology,China(No.HIT.2001.10)Harbin Municipal Youth Foundation of China(No.2002AFQXJ040).
文摘The paper firstly analyzes the influence factor on material removal rate of curved optical work-pieces in the bonnet polishing. Then the experiments are conducted to reveal the effects of several polishing parameters on the material removal rate when the spherical optical glasses are polished with different curvature radius, such as the decrement of the bonnet, the rotational speed of the bonnet and the curvature radius of the work-piece's surface using a bonnet trial-manufacturing machine developed by our assignment groups. In the end, the curvilinear relationships between these parameters and the material removal rate are acquired and the laws of the effects on material removal rate in bonnet polishing by several parameters are given. When the spherical-pieces are polished with smaller curvature radius, it is not proportional to either bonnet decrement or bonnet rotational speed as described by the Preston equation although the removal rate increases as the relative velocity or the applied pressure increases. Therefore, for the purpose of calculating more accurately the material removal of the spherical work-pieces, the Preston equation should be modified and studied further.
基金co-supported by the National Natural Science Foundation of China(Nos.52275458,and 52275207)the Natural Science Foundation of Tianjin(No.22JCZDJC00050).
文摘Vibration-assisted grinding is one of the most promising technologies for manufacturing optical components due to its efficiency and quality advantages.However,the damage and crack propagation mechanisms of materials in vibration-assisted grinding are not well understood.In order to elucidate the mechanism of abrasive scratching during vibration-assisted grinding,a kinematic model of vibration scratching was developed.The influence of process parameters on the evolution of vibration scratches to indentation or straight scratches is revealed by displacement metrics and velocity metrics.Indentation,scratch and vibration scratch experiments were performed on quartz glass,and the results showed that the vibration scratch cracks are a combination of indentation cracks and scratch cracks.Vibration scratch cracks change from indentation cracks to scratch cracks as the indenter moves from the entrance to the exit of the workpiece or as the vibration frequency changes from high to low.A vertical vibration scratch stress field model is established for the first time,which reveals that the maximum principal stress and tensile stress distribution is the fundamental cause for inducing the transformation of the vibration scratch cracking system.This model provides a theoretical basis for understanding of the mechanism of material damage and crack propagation during vibration-assisted grinding.
基金supported by the National Key Research and Development Program of China (No. 2018YFB1107602)the National Natural Science Foundation of China (Nos. 51875405 & 51375336)。
文摘Glass-ceramics have many excellent properties and are widely used in various fields. During the grinding process,the workpiece surface is typically subject to material removal by grit of incremental heights, which has rarely been the focus of research. As such, it is necessary to study the material removal mechanism of glass-ceramics under consecutive incremental loading, which more closely reflects the actual grinding process. In this paper,to analyze the plastic deformation and residual stress of lithium aluminosilicate(LAS) glass-ceramics, a finite element model is established based on the Drucker–Prager yield criterion for ductile regimes. A nano-scratch test was also conducted and the test results show that both the residual depth and residual stress increase with an increase in the number of increments, and that consecutive incremental loading promotes the plastic deformation of glass-ceramics and increases the residual stress of the material in the ductile-regime process. These findings provide guidance for achieving higher dimensional accuracy in the actual grinding of glass-ceramics parts.
基金Supported by National Natural Science Foundation of China(Grant No.51405034)Changsha Municipal Natural Science Foundation of China(Grant No.kq2202200)Hunan Provincial High-tech Industry Science and Technology Innovation Leading Program of China(Grant No.2022GK4027).
文摘Single-crystal silicon carbide(SiC)has been widely applied in the military and civil fields because of its excellent physical and chemical properties.However,as is typical in hard-to-machine materials,the good mechanical properties result in surface defects and subsurface damage during precision or ultraprecision machining.In this study,single-and double-varied-load nanoscratch tests were systematically performed on single-crystal 4H-SiC using a nanoindenter system with a Berkovich indenter.The material removal characteristics and cracks under different planes,indenter directions,normal loading rates,and scratch intervals were analyzed using SEM,FIB,and a 3D profilometer,and the mechanisms of material removal and crack propagation were studied.The results showed that the Si-plane of the single-crystal 4H-SiC and edge forward indenter direction are most suitable for material removal and machining.The normal loading rate had little effect on the scratch depth,but a lower loading rate increased the ductile region and critical depth of transition.Additionally,the crack interaction and fluctuation of the depth-distance curves of the second scratch weakened with an increase in the scratch interval,the status of scratches and chips changed,and the comprehensive effects of the propagation and interaction of the three cracks resulted in material fractures and chip accumulation.The calculated and experimental values of the median crack depth also showed good consistency and relativity.Therefore,this study provides an important reference for the high-efficiency and precision machining of single-crystal SiC to ensure high accuracy and a long service life.
基金supported by the National Key R&D Pro-gram of China(No.2021YFF0501700)the National Nat-ural Science Foundation of China(No.51905255)+1 种基金the Project of Guangdong Provincial Department of Education(No.2019KTSCX152)the Shenzhen Science and Technology Pro-gram(No.GJHZ20200731095204014).
文摘Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the progress of electrochemical dissolution.This research demonstrates for the first time a jet-electrolytic plasma micromachining(Jet-EPM)method to overcome this problem.Specifically,an electrolytic plasma is intentionally induced at the jet-material contact area by applying a potential high enough to surmount the surface boundary layer(such as a passive film or gas bubble)and enable material removal.Compared to traditional EJM,introducing plasma in the electrochemical jet system leads to considerable differences in machining performance due to the inclusion of plasma reactions.In this work,the implementation of Jet-EPM for fabricating microstructures in the semiconductor material 4H-SiC is demonstrated,and the machining principle and characteristics of Jet-EPM,including critical parameters and process windows,are comprehensively investigated.Theoretical modeling and experiments have elucidated the mechanisms of plasma ignition/evolution and the corresponding material removal,showing the strong potential of Jet-EPM for micromachining chemically resistant materials.The present study considerably augments the range of materials available for processing by the electrochemical jet technique.
基金supported by the Key Project of the National Natural Science Foundation of China (No. 50535020)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University (No. SKLSP200902)
文摘The mechanical characters of CdZnTe crystal were investigated by nanoscratch tests, and the effects of mechanical anisotropy on the material removal rate and surface quality were studied by polishing tests. There is a peak of frictional coefficient at the early stage of scratch, and increasing the vertical force will result in the increase of peak value correspondingly. The fluctuation phenomenon of frictional coefficient is generated at high vertical force. The lateral forces show the apparent twofold and threefold symmetries on (110) and (111) planes, respectively. To obtain high surface quality, low polishing pressure and hard direction (〈 T10 〉 directions on (110) plane and 〈 112 〉 directions on (111) plane) should be selected, and to achieve high material removal rate, high polishing pressure and soft direction (〈001〉 directions on (110) plane and 〈 121 〉 directions on (111) plane) should be selected.
基金the National Natural Science Foundation of China(Nos.51075309 and 51275372)the Twelfth five-year National Defence Pre-research Projects(No.51318020210)Wuhan High-Tech Development Project Foundation(No.201110921299)
文摘Axial deep creep-feed grinding machining technology is a high efficiency process method of engineering ceramics materials, which is an original method to process the cylindrical ceramics materials or hole along its axis. The analysis of axial force and edge fracture proved the cutting thickness and feed rate could be more than 5-10 mm and 200 mm/min respectively in once process, and realized high efficiency, low-cost process of engineering ceramics materials. Compared with high speed-deep grinding machining, this method is also a high efficiency machining technology of engineering ceramics materials as well as with low cost. In addition, removal mechanism analyses showed that both median/radial cracks and lateral cracks appeared in the part to be removed, and the processed part is seldom destroyed, only by adjusting the axial force to control the length of transverse cracks.
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199 and 42241149)Shenzhen Fundamental Research Program (Grant Nos.JCYJ20200109150425085 and JCYJ20220818102601004)+2 种基金Shenzhen Science and Technology Program (Grant Nos.JSGG20201103100001004 and JSGG20220831105800001)Research Development Program of China (Grant No.2022YFB4602502)Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010203)。
文摘To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.
文摘The removal mechanism is of importance to the grinding of hard and brittle ceramic materials. It is more suitable to analyze the material removal during ceramics honing processes by means of indention fracture approach. There are two honing characteristics different from grinding, the honing incidental tensile stresses and the crosshatch pattern. The stresses may influence material removal of brittle ceramics with lower tensile strength. In addition, the criss-cross cutting pattern on a bore known as crosshatch may also have its effect on the material removal of ceramics. The material removal of alumina is analyzed on the basis of honing characteristics, honing incidental tensile stresses and crosshatch pattern. By means of indentation fracture mechanics of brittle solids, the theoretical analysis of stress intensity factor and the crack response prove that honing incidental tensile stresses can increase the stress intensity factor of honing cracks and decrease the grinding stresses. So, the fracture criterion for crack propagation can be met easily. Therfore, it is possible to machine ceramic materials with small grinding forces in honing processes. The alumina honing experiments show that material at crosshatch intersecting point is removed by way of chipping which is similar to the edge-crumbled of ceramics. For brittle ceramics with lower tensile strength, such as Al 2O 3, SiO 2, the influences of the honing incidental tensile stresses and the crosshatch pattern on material removal are bigger than that of ceramics with relative higher toughness, such as ZrO 2 and Si 3N 4. Hence, the honing of Al 2O 3, SiO 2, is superior in cutting ability to the grinding. The large stock removal of brittle ceramic materials can be obtained through higher honing pressures. The increase in honing pressures can increase intensity factor of honing cracks, decrease the grinding stresses, and remarkably improve material removal rate. The researches show that honing is an efficient bore machining operation for brittle ceramics.
基金Item Sponsored by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of EducationScience and Technology[No.2009-0074199+1 种基金2012R1A1A2008399]the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement of Technology (KIAT) through the Workforce Development Program in Strategic Technology
文摘Recently,there has been an investigation of polishing processes that has considered new ultra-precision polishing technology for micro parts and optical parts such as those with aspheric and complex shapes.One suitable means of polishing complex shapes is to use a jet of abrasive fluid.However,aerodynamic disturbances and radial spreading are generated by the unstable polishing process of the jet on the surface of the workpiece when it is being polished.A method of jet stabilization has been proposed in which the original nozzle form of a jet of magnetorheological(MR)fluid contains abrasive particles that are magnetized using a magnetic.This paper details the design of an MR jet polishing system that uses an electromagnet,a nozzle,and a hydraulic unit to stabilize a slurry jet based on MR fluid, Second,for silica glass,the polishing spot and section profile are analyzed and the effect of the MR fluid jet polishing process is evaluated.The results of the experiment show that the removal profile is W-shaped and that,in this case,a stable can be proof of a distance of several tens of millimeters from the nozzle.Such results show the possibility of applying the proposed polishing method using MR fluids in ultra-precision micro and optical parts production processes. MR jet polishing shows great potential for use as a new type of precision surface polishing technology.In particular,this is a highly valuable process for the polishing of complex shapes such as micro parts,concaves parts,and cavities.
基金Supported by National Key Research and Development Program of China(Grant No.2023YFB4603602)High-Quality Development Project(Grant No.TC220H05S-007)。
文摘Water dissolution ultraprecision continuous polishing is a nontraditional machining method specifically designed for water-soluble crystals.The aim of this study is primarily to reduce the surface roughness for small sizes from an experimental standpoint.A trajectory uniformity simulation analysis is carried out for a consistent material removal.A material removal model is developed based on the water dissolution principle and kinematic analysis.Numerical simulations of single-and multiple-water-core polishing trajectories are performed to explore the influences of the processing parameters such as movement form,number of water cores,speed ratio,polishing time,and period ratio on the material removal uniformity.The material removal rate is calculated according to the Preston equation.The trajectory density nonuniformity is utilized to evaluate the global uniformity of the trajectory distributions and optimize the processing parameters for a better material removal uniformity.Verification experiments are conducted on a large-size ultraprecision continuous polisher using a typical potassium dihydrogen phosphate(KDP)crystal with a water-soluble structure.The edge collapse is improved from 51.499μm to 1.477μm by trajectory uniformity optimization.The changing trends of line profile variations in the validation experiment and simulation are similar.An ultrasmooth surface of a 180 mm×180 mm KDP crystal with a surface roughness root mean square of 1.718 nm is obtained after water dissolution ultraprecision continuous polishing.This study provides a comprehensive method for evaluation of material removal uniformity,which is valuable for the realization of high-quality machining for water-soluble crystals.