Phase Shifting And Logical Moire (PSALM) is a kind of computer image processing method which can be used in phase measurement and to obtain the shape, deformation and strain distribution of an object.This paper presen...Phase Shifting And Logical Moire (PSALM) is a kind of computer image processing method which can be used in phase measurement and to obtain the shape, deformation and strain distribution of an object.This paper presents the structure and working procedure of a 2D phase measurement PSALM2D program and its application. When analyzing moire interferometric fringes,we can obtain 2D distribution of displacement and strain.When it is used in reflection moire we can measure the slope of a specimen.Satisfactory visualization and quantitative results are given by PSALM2D.展开更多
Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (i.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening....Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (i.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening. Currently, modifying shift point velocity value or throttle by throttle change rate is one of common methods, but the results are not so satisfactory in some working condition such as uphill. The reason is that these methods merely consider throttle change rate which is not enough for a car driving in driver-vehicle-road environment system. So a novel fuzzy control modification strategy is proposed to avoid or reduce those abnormal shift actions. It can adjust shifting rule by the change rate of throttle, current gear position and road environment information, while different gear position and driving environment get corresponding modification value. In order to compare the results of shifting actions, fuel consumption and braking distance, emergent braking in level road and extra-urban driving cycle(EUDC) working conditions with fuzzy shifting schedule modification strategy are simulated digitally. Furthermore, a hardware-in-the-loop simulation platform is introduced to verify its effect in slope road condition according to the ON/OFF numbers of solenoid valve in hydraulic system. The simulation results show that the problem of unexpected shift in those working conditions may be resolved by fuzzy modification strategy. At last, it is concluded that although there is some slight decline in power performance in uphill situation, this fuzzy modification strategy could correctly identify slope of road, decrease braking distance, improve vehicle comfort and fuel economy effectively and prolong the life of clutch system. So, this fuzzy logic shifting strategy provides important references for vehicle intelligent shifting schedule.展开更多
本文主要研究高性能FPGA可编程逻辑单元中分布式RAM和移位寄存器两种时序功能的设计实现方法.运用静态Latch实现分布式RAM的写入同步,以降低对时序控制电路的要求;为克服电荷共享问题,提出通过隔断存储单元之间通路的方法实现移位寄存器...本文主要研究高性能FPGA可编程逻辑单元中分布式RAM和移位寄存器两种时序功能的设计实现方法.运用静态Latch实现分布式RAM的写入同步,以降低对时序控制电路的要求;为克服电荷共享问题,提出通过隔断存储单元之间通路的方法实现移位寄存器.以含两个四输入LUT(Look Up Table)的多功能可编程逻辑单元为例,详细说明电路的设计思路以及实现方法.研究表明,本文提出的方法可以简化对时序控制电路的设计要求,克服电荷共享问题,减少芯片面积.展开更多
文摘Phase Shifting And Logical Moire (PSALM) is a kind of computer image processing method which can be used in phase measurement and to obtain the shape, deformation and strain distribution of an object.This paper presents the structure and working procedure of a 2D phase measurement PSALM2D program and its application. When analyzing moire interferometric fringes,we can obtain 2D distribution of displacement and strain.When it is used in reflection moire we can measure the slope of a specimen.Satisfactory visualization and quantitative results are given by PSALM2D.
基金supported by Science and Technology Commission Shanghai Municipality (Grant No. 06dz1102, Grant No. 08dz1150401)
文摘Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (i.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening. Currently, modifying shift point velocity value or throttle by throttle change rate is one of common methods, but the results are not so satisfactory in some working condition such as uphill. The reason is that these methods merely consider throttle change rate which is not enough for a car driving in driver-vehicle-road environment system. So a novel fuzzy control modification strategy is proposed to avoid or reduce those abnormal shift actions. It can adjust shifting rule by the change rate of throttle, current gear position and road environment information, while different gear position and driving environment get corresponding modification value. In order to compare the results of shifting actions, fuel consumption and braking distance, emergent braking in level road and extra-urban driving cycle(EUDC) working conditions with fuzzy shifting schedule modification strategy are simulated digitally. Furthermore, a hardware-in-the-loop simulation platform is introduced to verify its effect in slope road condition according to the ON/OFF numbers of solenoid valve in hydraulic system. The simulation results show that the problem of unexpected shift in those working conditions may be resolved by fuzzy modification strategy. At last, it is concluded that although there is some slight decline in power performance in uphill situation, this fuzzy modification strategy could correctly identify slope of road, decrease braking distance, improve vehicle comfort and fuel economy effectively and prolong the life of clutch system. So, this fuzzy logic shifting strategy provides important references for vehicle intelligent shifting schedule.
文摘本文主要研究高性能FPGA可编程逻辑单元中分布式RAM和移位寄存器两种时序功能的设计实现方法.运用静态Latch实现分布式RAM的写入同步,以降低对时序控制电路的要求;为克服电荷共享问题,提出通过隔断存储单元之间通路的方法实现移位寄存器.以含两个四输入LUT(Look Up Table)的多功能可编程逻辑单元为例,详细说明电路的设计思路以及实现方法.研究表明,本文提出的方法可以简化对时序控制电路的设计要求,克服电荷共享问题,减少芯片面积.