A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor...A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor mismatch error, a gain-boosting opamp to minimize the finite gain error and gain nonlinearity,a bootstrapping switch to reduce the switch on-resistor nonlinearity, and an anti-disturb design to reduce the noise from the digital supply. This ADC is implemented in 0.18μm CMOS technology and occupies a die area of 3.2mm^2 , including pads. Measured performance includes - 0.18/ 0.15LSB of differential nonlinearity, -0.35/0.5LSB of integral nonlinearity, 75.7dB of signal-to-noise plus distortion ratio (SNDR) and 90. 5 dBc of spurious-free dynamic range (SFDR) for 2.4MHz input at 2.5MS/s. At full speed conversion (5MS/s) and for the same 2.4MHz input, the measured SNDR and SFDR are 73.7dB and 83.9 dBc, respectively. The power dissipation including output pad drivers is 21mW at 2.5MS/s and 34mW at 5MS/s,both at 2.7V supply.展开更多
We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8...We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.展开更多
In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd ...In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd only to the speed,pres- sure and time of processing.In polishing,the removed material can be represented and entreated by the convolution of the removal function of polishing head and the dwell function.The properties of removal function are presented.The assumptions and methods given by the author have been shown to be correct and applicable by experiments using a ring lap to polish the optical surfac.展开更多
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show...The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 to...AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data.展开更多
A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulatio...A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.展开更多
A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplif...A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplifier (OPA) is utilized to form negative feedback. A proportional to absolute temperature (PTAT) current reference with transistors operated in a weak inversion is used as the bias circuit. The resistor and the OPA nonlinearity behavior are analyzed in detail. By optimizing parameters in OPA and adopting a small voltage coefficient polysilicon resistor as a linear device, a high linearity is achieved. The circuit is implemented in a standard 0. 6 μm CMOS technology. The low frequency gain of the OPA exceeds 90 dB. The test results indicate that the total harmonic distortion (THD)is 0. 000 2%. The common-mode input linearity range is 0 to 2. 6 V. Correspondingly, the output current range is 50 to 426μA. The sensitivity of the PTAT current reference to Vdd is approximately 0. 021 7. The chip consumes a power of less than 1.3 mW for a 5 V supply, and occupies an area of 0. 112 mm^2.展开更多
A direct conversion CMOS DVB-S front-end employs a T-configuration variable attenuator,a single-to- differential low noise amplifier, and a low noise mixer. By innovative use of the attenuator, the linearity handling ...A direct conversion CMOS DVB-S front-end employs a T-configuration variable attenuator,a single-to- differential low noise amplifier, and a low noise mixer. By innovative use of the attenuator, the linearity handling ability of the system is dramatically improved. The system is designed and fabricated in SMIC 0.18 μm RF CMOS technology. The measurement data show that the front-end provides a total of more than 30rib dynamic range and a noise figure of 5dB in the wide frequency signal band. The prototype front-end consumes only 10mA and achieves an IIP3 of + 20dBm.展开更多
文摘A 13bit,pipelined analog-to-digital converter (ADC) designed to achieve high linearity is described. The high linearity is realized by using the passive capacitor error-averaging technique to calibrate the capacitor mismatch error, a gain-boosting opamp to minimize the finite gain error and gain nonlinearity,a bootstrapping switch to reduce the switch on-resistor nonlinearity, and an anti-disturb design to reduce the noise from the digital supply. This ADC is implemented in 0.18μm CMOS technology and occupies a die area of 3.2mm^2 , including pads. Measured performance includes - 0.18/ 0.15LSB of differential nonlinearity, -0.35/0.5LSB of integral nonlinearity, 75.7dB of signal-to-noise plus distortion ratio (SNDR) and 90. 5 dBc of spurious-free dynamic range (SFDR) for 2.4MHz input at 2.5MS/s. At full speed conversion (5MS/s) and for the same 2.4MHz input, the measured SNDR and SFDR are 73.7dB and 83.9 dBc, respectively. The power dissipation including output pad drivers is 21mW at 2.5MS/s and 34mW at 5MS/s,both at 2.7V supply.
文摘We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.
文摘In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd only to the speed,pres- sure and time of processing.In polishing,the removed material can be represented and entreated by the convolution of the removal function of polishing head and the dwell function.The properties of removal function are presented.The assumptions and methods given by the author have been shown to be correct and applicable by experiments using a ring lap to polish the optical surfac.
基金supported by the National Natural Science Foundation of China(NSFC 52175281,52475315)Youth Innovation Promotion Association of CAS(2021382)。
文摘The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
基金Supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),the Ministry of Health&Welfare,Republic of Korea(No.RS-2020-KH088726)the Patient-Centered Clinical Research Coordinating Center(PACEN),the Ministry of Health and Welfare,Republic of Korea(No.HC19C0276)the National Research Foundation of Korea(NRF),the Korea Government(MSIT)(No.RS-2023-00247504).
文摘AIM:To evaluate long-term visual field(VF)prediction using K-means clustering in patients with primary open angle glaucoma(POAG).METHODS:Patients who underwent 24-2 VF tests≥10 were included in this study.Using 52 total deviation values(TDVs)from the first 10 VF tests of the training dataset,VF points were clustered into several regions using the hierarchical ordered partitioning and collapsing hybrid(HOPACH)and K-means clustering.Based on the clustering results,a linear regression analysis was applied to each clustered region of the testing dataset to predict the TDVs of the 10th VF test.Three to nine VF tests were used to predict the 10th VF test,and the prediction errors(root mean square error,RMSE)of each clustering method and pointwise linear regression(PLR)were compared.RESULTS:The training group consisted of 228 patients(mean age,54.20±14.38y;123 males and 105 females),and the testing group included 81 patients(mean age,54.88±15.22y;43 males and 38 females).All subjects were diagnosed with POAG.Fifty-two VF points were clustered into 11 and nine regions using HOPACH and K-means clustering,respectively.K-means clustering had a lower prediction error than PLR when n=1:3 and 1:4(both P≤0.003).The prediction errors of K-means clustering were lower than those of HOPACH in all sections(n=1:4 to 1:9;all P≤0.011),except for n=1:3(P=0.680).PLR outperformed K-means clustering only when n=1:8 and 1:9(both P≤0.020).CONCLUSION:K-means clustering can predict longterm VF test results more accurately in patients with POAG with limited VF data.
文摘A CMOS radio frequency low noise amplifier with high linearity and low operation voltage of less than 1.0V is presented.In this circuit,an auxiliary MOSFET in the triode region is used to boost the linearity.Simulation shows that this method can boost the input-referred 3rd-order intercept point with much less power dissipation than that of traditional power/linearity tradeoff solution which pays at least 1dB power for 1dB linearity improvement.It is also shown that the size of the common-gate PMOS transistor needs to be optimized to reduce its loaded input impedance so as not to degrade the linearity due to high voltage gain at its source terminal.The simulation is carried out with TSMC 0.18μm RF CMOS technology and SpectreRF.
文摘A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplifier (OPA) is utilized to form negative feedback. A proportional to absolute temperature (PTAT) current reference with transistors operated in a weak inversion is used as the bias circuit. The resistor and the OPA nonlinearity behavior are analyzed in detail. By optimizing parameters in OPA and adopting a small voltage coefficient polysilicon resistor as a linear device, a high linearity is achieved. The circuit is implemented in a standard 0. 6 μm CMOS technology. The low frequency gain of the OPA exceeds 90 dB. The test results indicate that the total harmonic distortion (THD)is 0. 000 2%. The common-mode input linearity range is 0 to 2. 6 V. Correspondingly, the output current range is 50 to 426μA. The sensitivity of the PTAT current reference to Vdd is approximately 0. 021 7. The chip consumes a power of less than 1.3 mW for a 5 V supply, and occupies an area of 0. 112 mm^2.
文摘A direct conversion CMOS DVB-S front-end employs a T-configuration variable attenuator,a single-to- differential low noise amplifier, and a low noise mixer. By innovative use of the attenuator, the linearity handling ability of the system is dramatically improved. The system is designed and fabricated in SMIC 0.18 μm RF CMOS technology. The measurement data show that the front-end provides a total of more than 30rib dynamic range and a noise figure of 5dB in the wide frequency signal band. The prototype front-end consumes only 10mA and achieves an IIP3 of + 20dBm.