This paper builds multi-objective effect evaluation indicator system of smart grid construction from five connotations including strong and reliable, clean and green, friendly and interactive, transparent and open, ec...This paper builds multi-objective effect evaluation indicator system of smart grid construction from five connotations including strong and reliable, clean and green, friendly and interactive, transparent and open, economical and effective, which is embodied in the power generation, transmission, transformation, distribution, consumption, dispatching and information communication platform of smart grid. Taking the construction of smart grid in a certain area of China as an example, this paper uses analytic hierarchy process (AHP) to make an empirical analysis on it, and makes a comprehensive and objective evaluation on its construction effect.展开更多
In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calcula...In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calculate these terms and the modelled equations. Discrepancies between model calculations and measurements are quite often attributed to incorrect modelling, while the suitability and accuracy of the numerical methods used are seldom scrutinized. Instead, alternate near-wall and Reynolds-stress models are proposed to remedy the incorrect turbulent flow calculations. On the other hand, if care is not taken in the numerical treatment of the Reynolds-stress gradient terms, physically unrealistic results and solution instability could occur. Previous studies by the author and his collaborators on the effects of numerical methods have shown that some of the more commonly used numerical methods could enhance numerical stability in the solution procedure but would introduce considerable inaccuracy to the results. The flow cases chosen to demonstrate these inaccuracies are a backstep flow and flow in a square duct, where flow complexities are present. The current investigation attempts to show that the above-mentioned effects of numerical methods could also occur in the calculation of a developing plane channel flow, where flow complexities are absent. In addition, this study shows that the results thus obtained lead to a predicted skin friction coefficient that is influenced more by the numerical method used than by the turbulence model invoked. Together, these results show that numerical treatment of the Reynolds-stress gradients in the equations play an important role, even for a developing plane channel flow.展开更多
A differential quadrature (DQ) method for orthotropic plates was proposed based on Reddy' s theory of plates with the effects of the higher-order transverse shear deformations. Wang-Bert's DQ approach was also...A differential quadrature (DQ) method for orthotropic plates was proposed based on Reddy' s theory of plates with the effects of the higher-order transverse shear deformations. Wang-Bert's DQ approach was also further extended to handle the boundary conditions of plates. The computational convergence was studied, and the numerical results were obtained for different grid spacings and compared with the existing results. The results show that the DQ method is fairly reliable and effective.展开更多
Rasterization is a conversion process accompanied with information loss, which includes the loss of features' shape, structure, position, attribute and so on. Two chief factors that affect estimating attribute accura...Rasterization is a conversion process accompanied with information loss, which includes the loss of features' shape, structure, position, attribute and so on. Two chief factors that affect estimating attribute accuracy loss in rasterization are grid cell size and evaluating method. That is, attribute accuracy loss in rasterization has a close relationship with grid cell size; besides, it is also influenced by evaluating methods. Therefore, it is significant to analyze these two influencing factors comprehensively. Taking land cover data of Sichuan at the scale of 1:250,000 in 2005 as a case, in view of data volume and its processing time of the study region, this study selects 16 spatial scales from 600 m to 30 km, uses rasterizing method based on the Rule of Maximum Area (RMA) in ArcGIS and two evaluating methods of attribute accuracy loss, which are Normal Analysis Method (NAM) and a new Method Based on Grid Cell (MBGC), respectively, and analyzes the scale effect of attribute (it is area here) accuracy loss at 16 different scales by these two evaluating methods comparatively. The results show that: (1) At the same scale, average area accuracy loss of the entire study region evaluated by MBGC is significantly larger than the one estimated using NAM. Moreover, this discrepancy between the two is obvious in the range of 1 km to 10 km. When the grid cell is larger than 10 km, average area accuracy losses calculated by the two evaluating methods are stable, even tended to parallel. (2) MBGC can not only estimate RMA rasterization attribute accuracy loss accurately, but can express the spatial distribution of the loss objectively. (3) The suitable scale domain for RMA rasterization of land cover data of Sichuan at the scale of 1:250,000 in 2005 is better equal to or less than 800 m, in which the data volume is favorable and the processina time is not too Iona. as well as the area accuracv loss is less than 2.5%.展开更多
This paper describes the numerical study of nonstratified airflow over a real complex terrain. Attention is focused on the mechanism of a local strong wind induced by a topographic effect. In order to clarify the mech...This paper describes the numerical study of nonstratified airflow over a real complex terrain. Attention is focused on the mechanism of a local strong wind induced by a topographic effect. In order to clarify the mechanism of the occurrence of strong winds accompanied by the effects of terrain, the use of a numerical simulation is very effective, in which conditions can be set without the influence of ground roughness and temperature distribution. As a result, airflow converged to a small basin of mountain terrain in the upper stream, and local strong wind was generated leeward along the slope of the mountain terrain. Furthermore, the influence of the reproduction accuracy of geographical features, that is, horizontal grid resolution, was examined. Consequently, to reproduce the above-mentioned local strong wind, it was shown that horizontal grid resolution from 50 m to about 100 m was necessary.展开更多
Lattice Boltzmann method is one of the widely used in multiphase fluid flow.However,the two main disadvantages of this method are the instability of numerical calculations due to the large density ratio of two phases ...Lattice Boltzmann method is one of the widely used in multiphase fluid flow.However,the two main disadvantages of this method are the instability of numerical calculations due to the large density ratio of two phases and impossibility of the temperature distribution to be fed back into the velocity distribution function when the temperature is simulated.Based on the combination prescribed by Inamuro,the large density ratio two-phase flow model and thermal model makes the density ratio of the model simulation to be increased to 2778:1 by optimizing the interface distribution function of two-phase which improves the accuracy of differential format.The phase transition term is added as source term into the distribution function controlling two phase order parameters to describe the temperature effect on the gas-liquid phase transition.The latent heat generated from the phase change is also added as a source term into the temperature distribution function which simulates the movement of the flow under the common coupling of density,velocity,pressure and temperature.The density and the temperature distribution of single bubble are simulated.Comparison of the simulation results with experimental results indicates a good agreement pointing out the effectiveness of the improved model.展开更多
文摘This paper builds multi-objective effect evaluation indicator system of smart grid construction from five connotations including strong and reliable, clean and green, friendly and interactive, transparent and open, economical and effective, which is embodied in the power generation, transmission, transformation, distribution, consumption, dispatching and information communication platform of smart grid. Taking the construction of smart grid in a certain area of China as an example, this paper uses analytic hierarchy process (AHP) to make an empirical analysis on it, and makes a comprehensive and objective evaluation on its construction effect.
文摘In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calculate these terms and the modelled equations. Discrepancies between model calculations and measurements are quite often attributed to incorrect modelling, while the suitability and accuracy of the numerical methods used are seldom scrutinized. Instead, alternate near-wall and Reynolds-stress models are proposed to remedy the incorrect turbulent flow calculations. On the other hand, if care is not taken in the numerical treatment of the Reynolds-stress gradient terms, physically unrealistic results and solution instability could occur. Previous studies by the author and his collaborators on the effects of numerical methods have shown that some of the more commonly used numerical methods could enhance numerical stability in the solution procedure but would introduce considerable inaccuracy to the results. The flow cases chosen to demonstrate these inaccuracies are a backstep flow and flow in a square duct, where flow complexities are present. The current investigation attempts to show that the above-mentioned effects of numerical methods could also occur in the calculation of a developing plane channel flow, where flow complexities are absent. In addition, this study shows that the results thus obtained lead to a predicted skin friction coefficient that is influenced more by the numerical method used than by the turbulence model invoked. Together, these results show that numerical treatment of the Reynolds-stress gradients in the equations play an important role, even for a developing plane channel flow.
基金key Project of the Municipal Commission of Science and Technology of Shanghai
文摘A differential quadrature (DQ) method for orthotropic plates was proposed based on Reddy' s theory of plates with the effects of the higher-order transverse shear deformations. Wang-Bert's DQ approach was also further extended to handle the boundary conditions of plates. The computational convergence was studied, and the numerical results were obtained for different grid spacings and compared with the existing results. The results show that the DQ method is fairly reliable and effective.
基金The Independent Research of the State Key Laboratory of Resource and Environmental Information System,No.O88RA100SAThe Third Innovative and Cutting-edge Projects of Institute of Geographic Sciences andNatural Resources Research, CAS, No.O66U0309SZ
文摘Rasterization is a conversion process accompanied with information loss, which includes the loss of features' shape, structure, position, attribute and so on. Two chief factors that affect estimating attribute accuracy loss in rasterization are grid cell size and evaluating method. That is, attribute accuracy loss in rasterization has a close relationship with grid cell size; besides, it is also influenced by evaluating methods. Therefore, it is significant to analyze these two influencing factors comprehensively. Taking land cover data of Sichuan at the scale of 1:250,000 in 2005 as a case, in view of data volume and its processing time of the study region, this study selects 16 spatial scales from 600 m to 30 km, uses rasterizing method based on the Rule of Maximum Area (RMA) in ArcGIS and two evaluating methods of attribute accuracy loss, which are Normal Analysis Method (NAM) and a new Method Based on Grid Cell (MBGC), respectively, and analyzes the scale effect of attribute (it is area here) accuracy loss at 16 different scales by these two evaluating methods comparatively. The results show that: (1) At the same scale, average area accuracy loss of the entire study region evaluated by MBGC is significantly larger than the one estimated using NAM. Moreover, this discrepancy between the two is obvious in the range of 1 km to 10 km. When the grid cell is larger than 10 km, average area accuracy losses calculated by the two evaluating methods are stable, even tended to parallel. (2) MBGC can not only estimate RMA rasterization attribute accuracy loss accurately, but can express the spatial distribution of the loss objectively. (3) The suitable scale domain for RMA rasterization of land cover data of Sichuan at the scale of 1:250,000 in 2005 is better equal to or less than 800 m, in which the data volume is favorable and the processina time is not too Iona. as well as the area accuracv loss is less than 2.5%.
文摘This paper describes the numerical study of nonstratified airflow over a real complex terrain. Attention is focused on the mechanism of a local strong wind induced by a topographic effect. In order to clarify the mechanism of the occurrence of strong winds accompanied by the effects of terrain, the use of a numerical simulation is very effective, in which conditions can be set without the influence of ground roughness and temperature distribution. As a result, airflow converged to a small basin of mountain terrain in the upper stream, and local strong wind was generated leeward along the slope of the mountain terrain. Furthermore, the influence of the reproduction accuracy of geographical features, that is, horizontal grid resolution, was examined. Consequently, to reproduce the above-mentioned local strong wind, it was shown that horizontal grid resolution from 50 m to about 100 m was necessary.
基金supported by the National Natural Science Foundation of China (51609131)Shandong Provincial Natural Science Foundation of China (ZR2017MEE031)+1 种基金 Weihai Science and Technology Development Plan (2017GNS18)Shandong Provincial Higher Educational Science and Technology Foundation of China (J16LA61)
文摘Lattice Boltzmann method is one of the widely used in multiphase fluid flow.However,the two main disadvantages of this method are the instability of numerical calculations due to the large density ratio of two phases and impossibility of the temperature distribution to be fed back into the velocity distribution function when the temperature is simulated.Based on the combination prescribed by Inamuro,the large density ratio two-phase flow model and thermal model makes the density ratio of the model simulation to be increased to 2778:1 by optimizing the interface distribution function of two-phase which improves the accuracy of differential format.The phase transition term is added as source term into the distribution function controlling two phase order parameters to describe the temperature effect on the gas-liquid phase transition.The latent heat generated from the phase change is also added as a source term into the temperature distribution function which simulates the movement of the flow under the common coupling of density,velocity,pressure and temperature.The density and the temperature distribution of single bubble are simulated.Comparison of the simulation results with experimental results indicates a good agreement pointing out the effectiveness of the improved model.