The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem o...The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem of moment of momentum and the Newton’s second law. The full nonlinearity of the equations of motion (EOMs) and the full nonlinear coupling between external loads and the motions are preserved in this method. Compared with the conventional methods, this method is more transparent and it can be applied directly to the large-amplitude rotation cases. An in-house code is developed to implement this method. The capability of in-house code is verified by comparing its simulation results with those predicted by FAST. Based on the in-house code, the dynamic responses of a spar-type FOWT system are investigated under various conditions.展开更多
The problem of hydrodynamics of the three-leaf dislocated floating-ring bearing was studied by means of boundary element method.The law including the distribution of pressure on boundary surface(axial,bearing and floa...The problem of hydrodynamics of the three-leaf dislocated floating-ring bearing was studied by means of boundary element method.The law including the distribution of pressure on boundary surface(axial,bearing and floating-ring)and its friction loss in different eccentricities was obtained.The results show that the inner friction of three-leaf dislocated bearing increases from 390.875to 1 091.65,and the inner friction of three-leaf dislocated floating-ring bearing increases from 94.2523to 114.5069with eccentricity varying from 0to 0.075in nondimensional.So changing the pressure and flow field of bearing by adding floating-ring is more stability and less wasted work of friction than three-leaf dislocated bearing.展开更多
With the rapid increase of the number and influence of floating population in China,it is urgently needed to understand the regional types of China's floating population and their spatial characteristics. After revie...With the rapid increase of the number and influence of floating population in China,it is urgently needed to understand the regional types of China's floating population and their spatial characteristics. After reviewing the current methods for identifying regional types of floating population,this paper puts forward a new composite-index identification method and its modification version which is consisted of two indexes of the net migration rate and gross migration rate. Then,the traditional single-index and the new composite-index identification methods are empirically tested to explore their spatial patterns and characteristics by using China's 2000 census data at county level. The results show:(1) The composite-index identification method is much better than traditional single-index method because it can measure the migration direction and scale of floating simultaneously,and in particular it can identify the unique regional types of floating population with large scale of immigration and emigration. (2) The modified composite-index identification method,by using the share of a region's certain type of floating population to the total in China as weights,can effectively correct the over-or under-estimated errors due to the rather large or small total population of a region. (3) The spatial patterns of different regional types of China's floating population are closely related to the regional differentiation of their natural environment,population density and socio-economic development level. The three active regional types of floating population are mainly located in the eastern part of China with lower elevation,more than 800 mm precipitation,rather higher population densities and economic development levels.展开更多
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.Th...An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object.Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool,FAST,on the purpose of obtaining the dynamic characteristics of the floating wind turbine,and determining parameters for design load cases of finite element calculation.Then design load cases are identified,and finite element analyses are performed for these design load cases.The structural stresses due to wave-induced loads and wind-induced loads are calculated,and then combined to assess the structural strength of the floating wind turbine.The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.11632011)
文摘The dynamic behavior of floating offshore wind turbine (FOWT) is crucial for its design and optimization. A novel dynamics analysis method for the spar-type FOWT system is proposed in this paper based on the theorem of moment of momentum and the Newton’s second law. The full nonlinearity of the equations of motion (EOMs) and the full nonlinear coupling between external loads and the motions are preserved in this method. Compared with the conventional methods, this method is more transparent and it can be applied directly to the large-amplitude rotation cases. An in-house code is developed to implement this method. The capability of in-house code is verified by comparing its simulation results with those predicted by FAST. Based on the in-house code, the dynamic responses of a spar-type FOWT system are investigated under various conditions.
基金National Natural Science Foundation of China(11362015)
文摘The problem of hydrodynamics of the three-leaf dislocated floating-ring bearing was studied by means of boundary element method.The law including the distribution of pressure on boundary surface(axial,bearing and floating-ring)and its friction loss in different eccentricities was obtained.The results show that the inner friction of three-leaf dislocated bearing increases from 390.875to 1 091.65,and the inner friction of three-leaf dislocated floating-ring bearing increases from 94.2523to 114.5069with eccentricity varying from 0to 0.075in nondimensional.So changing the pressure and flow field of bearing by adding floating-ring is more stability and less wasted work of friction than three-leaf dislocated bearing.
基金Foundation: Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-322, National Natural Science Foundation of China, No.40971102 The National Science and Technology Support Plan, No.2006BAJ11B02-04
文摘With the rapid increase of the number and influence of floating population in China,it is urgently needed to understand the regional types of China's floating population and their spatial characteristics. After reviewing the current methods for identifying regional types of floating population,this paper puts forward a new composite-index identification method and its modification version which is consisted of two indexes of the net migration rate and gross migration rate. Then,the traditional single-index and the new composite-index identification methods are empirically tested to explore their spatial patterns and characteristics by using China's 2000 census data at county level. The results show:(1) The composite-index identification method is much better than traditional single-index method because it can measure the migration direction and scale of floating simultaneously,and in particular it can identify the unique regional types of floating population with large scale of immigration and emigration. (2) The modified composite-index identification method,by using the share of a region's certain type of floating population to the total in China as weights,can effectively correct the over-or under-estimated errors due to the rather large or small total population of a region. (3) The spatial patterns of different regional types of China's floating population are closely related to the regional differentiation of their natural environment,population density and socio-economic development level. The three active regional types of floating population are mainly located in the eastern part of China with lower elevation,more than 800 mm precipitation,rather higher population densities and economic development levels.
基金financially supported by the National Natural Science Foundation of China(Grant No.51239007)
文摘An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object.Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool,FAST,on the purpose of obtaining the dynamic characteristics of the floating wind turbine,and determining parameters for design load cases of finite element calculation.Then design load cases are identified,and finite element analyses are performed for these design load cases.The structural stresses due to wave-induced loads and wind-induced loads are calculated,and then combined to assess the structural strength of the floating wind turbine.The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.