A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of tw...A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.展开更多
Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is ...Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.展开更多
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDB255)the Educational Commission of Hubei Province of China(No.Q20081505)the Key Laboratory for Green Chemical Process of the Ministry of Education of China (No.RGCT200801)
文摘A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the sub- strate temperature Ts of 1000℃ to 1050℃ was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faeeted large crystal diamond was obtained.
基金Projects(50331040 60171034) supported by the National Natural Science Foundation of China
文摘Numerical simulation based on phase field method was performed to describe the solidification of silicon. The effect of anisotropy, undercooling and coupling parameter on dendrite growth shape was investigated. It is indicated that the entire facet dendrite shapes are obtained by using regularized phase field model. Steady state tip velocity of dendrite drives to a fixed value when γ≤0.13. With further increasing the anisotropy value, steady state tip velocity decreases and the size is smaller. With the increase in the undercooling and coupling parameter, crystal grows from facet to facet dendrite. In addition, with increasing coupling parameter, the facet part of facet dendrite decreases gradually, which is in good agreement with Wulff theory.