A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitroge...A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9.展开更多
In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorize...In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.展开更多
In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via va...In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials.展开更多
In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface...In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs.展开更多
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered...As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.展开更多
This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their the...This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability,volatile pyrolysis products and flammability characteristics were investigated.The char residues of the composites,after combustion in a cone calorimeter,were analyzed with environmental scanning electron microscopy(ESEM).The thermal decomposition stability of the composites improved in the presence of EG.However,the char content was less than expected as per the combination of the wt%EG added into PLA-starch and the%residue of PLA-starch.The flammability performance of the PLA-starch/EG composites improved,especially at 15 wt%EG content,due to a thick and strong worm-like char structure.The peak heat release rate(PHRR)improved by 74%,the total smoke production(TSP)by 40%and the specific extinction area(SEA)by 55%.The improvements are attributed to the ability of EG to exfoliate at increased temperatures during which time three effects occurred:(i)cooling due to an endothermic exfoliation process,(ii)dilution due to release of H2O,SO2 and CO2 gases,and (iii)formation of a protective intumescent char layer.However,the CO and CO2 yields were found to be unfavorably high due to the presence of EG.展开更多
The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded...The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded perlite (EP) was evaluated for oil removal from the water. The effects of sorbent dosage, desorption time, oil amount in the water, and contact time on composite materials sorption were investigated. The results showed that the optimum quantity of EP was between 0.5 g and 1.0 g for 25 cm2 polymeric fabrics bags. Oil removal efficiency for 6 L/m2 of oil amount in the water was 52%-72%, 44%-63%, and 37%-48% for AF, PP, and SS composite materials, respectively. Oil/water selectivity analysis of different composite materials showed that AF composite material had a very high degree of hydrophobicity and oil sorption capacity of approximately 10.17 g/g. Both oil sorption kinetics and equilibrium studies were carried out, and the equilibrium process of composite materials was described well by the Langmuir isotherm, and the oil sorption kinetics of composite materials showed good correlation coefficients for the pseudo-second order kinetic model. Intra-particle diffusion studies showed that oil sorption mechanism was controlled by the three processes, involving in external liquid membrane diffusion, surface sorption, and intra-particle diffusion.展开更多
A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emissio...A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.展开更多
Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">p...Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">pollution</span></span><span><span style="font-family:Verdana;"> is the proliferation of plastic waste. Among these </span><span style="font-family:Verdana;">wastes</span><span style="font-family:Verdana;"> there is expanded </span></span><span style="font-family:Verdana;">polystyrene (EPS), mainly from </span><span style="font-family:Verdana;">packaging</span><span style="font-family:Verdana;">. This study aims to valorize EPS waste by developing a composite material from EPS waste and wood waste. For this purpose, a resin made of EPS has been elaborated by dissolving EPS in acetone. That resin was used as a binder in volume proportions of 15%, 20%, 25% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 30% to stabilize the samples. Some of them were thermoformed. The method of elaboration was based on a device consisting of an extruder for mixing the constituents, and a manual press for shaping and compacting the samples. Analyses show that the drying time depends on the composition of the mixture. Increasing the resin content leads to reduce water absorption and porosity of the samples;it also contributes to homogenize the internal structure of the samples. However, for the same resin contents, the thermoformed samples are less porous;they have </span><span style="font-family:Verdana;">more</span><span style="font-family:Verdana;"> homogeneous internal structure</span><span style="font-family:Verdana;">;and</span><span style="font-family:Verdana;"> absorb less water than non-thermoformed samples.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their hig...<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their high flammability. This work aims to study the impact of the addition of mineral filler (clay) on the fire behaviour of wood-polystyrene composites and their mechanical properties. Thus, composites containing 25% of expanded polystyrene binder have been produced. On this base material, proportions of clay ranging from 0% to 15% were gradually added. These samples were elaborated by compaction and for some them, submitted to thermoforming after drying. Both kinds of sample were subjected to flame persistence test;flexural strength and compressive strength test were also measured. The results show that composites without mineral filler ignite continuously until the total consumption and when the mineral filler content increases the combustion time decreases. The addition of the mineral filler allows these composites to pass from class M3 of moderately flammable combustible materials to class M2 of hardly flammable materials, according to the M classification of construction and furnishing materials. The measurement of the mechanical properties shows that the strengths increase when the filler content goes from 0% to 10% and then decrease. This leads to set the optimum content of mineral filler around 10%.</span> </div>展开更多
Expanded graphite(EG) films exhibit potential use in a wide field including thermal management, conductive applications,and electromagnetic interference(EMI) shielding. However, their poor tensile strength and brittle...Expanded graphite(EG) films exhibit potential use in a wide field including thermal management, conductive applications,and electromagnetic interference(EMI) shielding. However, their poor tensile strength and brittleness are crucial deficiencies for commercial applications. To address these defects, in our work, natural rubber(NR) is employed to improve EG films for better mechanical strength and flexibility. The origin of the strengthening effect of EG films by the addition of natural rubber mainly arises from the formation of a simulate shell structure. Compared to the neat EG films, the addition of merely 2 wt% NR can give rise to superior ductility. Further, the loading of 10 wt% NR realizes a significant mechanical enhancement of the EG/NR films, i.e., 2.4 and 11.4 times increase in tensile strength and elongation at break, respectively. Besides, EG/NR films containing 10 wt% NR can still sustain excellent thermal and electric conductivities of 173 W·m^-1·K^-1 and 75 S·cm^-1, respectively. Furthermore, a very high EMI of 41.4 dB is achieved as the film thickness reaches 50 μm. Thus, the lightweight EG/NR films with comprehensive performance as well as their virtue of green and simple large-scale preparation endow them with the possibility of designing next-generation flexible electronics.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high temp...In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.展开更多
Erratum to:Journal of Thermal Science https://doi.org/10.1007/s11630-025-2140-3 The original article has been corrected.It was written:Sulfur-Free Expanded Graphite/Paraffin Composite Phase Change Materia with High Th...Erratum to:Journal of Thermal Science https://doi.org/10.1007/s11630-025-2140-3 The original article has been corrected.It was written:Sulfur-Free Expanded Graphite/Paraffin Composite Phase Change Materia with High Thermal Conductivity for Lithium-Ion Battery Thermal Management.展开更多
The building sector significantly influences the environment, notably through resource consumption and waste production. Evaluating locally available resources and adopting sustainable development practices are essent...The building sector significantly influences the environment, notably through resource consumption and waste production. Evaluating locally available resources and adopting sustainable development practices are essential to mitigate this impact. This study proposes the fabrication of a wood-polymer composite by recycling polystyrene and wood sawdust. Polystyrene was dissolved in a solvent to obtain a polymer matrix, which was then reinforced with recycled wood sawdust. The mixture was cold-pressed to form composite panels. Physical properties such as density and absorption, as well as mechanical properties like the modulus of elasticity and flexural strength, were examined. Results show that the physical and mechanical properties of the composites vary with the particle size distribution of the wood particles. The modulus of elasticity and flexural strength increase with particle size. The maximum values obtained for the modulus of elasticity and flexural strength are 842 MPa and 3.16 MPa, respectively. These physical and mechanical characteristics indicate that the developed composite material can be used to manufacture elements such as furniture, false ceilings, and lightweight partitions, thereby contributing to more sustainable construction practices.展开更多
基金Funded by the Science Foundation of Jiangsu Province (No. BK2009534)Foundation of Oil Gas Storage and Transport of Jiangsu Province (No.CY0901)
文摘A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9.
文摘In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.
基金financially supported by the National Natural Science Foundations of China (Grant Nos. 51472222 and 51372232)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006)the Fundamental Research Funds for the Central Universities for financial support (Grant No. 2652016046)
文摘In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials.
基金Funded by the Major State Research Development Program of China during the 13th Five-Year Plan Period(No.2016YFC0700904)the Science and Technology Support Program of Hubei Province(Nos.2014BAA134 and 2015BAA107)
文摘In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs.
基金supported by an Early Career Faculty Grant from NASA’s Space Technology Research Grants Program (80NSSC18K1509)supported by the Institute for Electronics and Nanotechnology Seed Grant and performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (ECCS-2025462)
文摘As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.
文摘This work reports on the effect of commercial expandable graphite(EG)on the flammability and thermal decomposition properties of PLA-starch blend.The PLA-starch/EG composites were prepared by melt-mixing and their thermal stability,volatile pyrolysis products and flammability characteristics were investigated.The char residues of the composites,after combustion in a cone calorimeter,were analyzed with environmental scanning electron microscopy(ESEM).The thermal decomposition stability of the composites improved in the presence of EG.However,the char content was less than expected as per the combination of the wt%EG added into PLA-starch and the%residue of PLA-starch.The flammability performance of the PLA-starch/EG composites improved,especially at 15 wt%EG content,due to a thick and strong worm-like char structure.The peak heat release rate(PHRR)improved by 74%,the total smoke production(TSP)by 40%and the specific extinction area(SEA)by 55%.The improvements are attributed to the ability of EG to exfoliate at increased temperatures during which time three effects occurred:(i)cooling due to an endothermic exfoliation process,(ii)dilution due to release of H2O,SO2 and CO2 gases,and (iii)formation of a protective intumescent char layer.However,the CO and CO2 yields were found to be unfavorably high due to the presence of EG.
基金National Important Science & Technology Specific Projects of China ( No. 2009ZX07317-006-02,No. 2009ZX07318-008-007)State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,China ( No. 2013DX06)
文摘The oil sorption capacity of composite materials made up of different polymeric fabrics (namely acrylic fabric (AF), polypropylene nonwoven (PP), and silk stocking (SS) as composite out-packing materials) and expanded perlite (EP) was evaluated for oil removal from the water. The effects of sorbent dosage, desorption time, oil amount in the water, and contact time on composite materials sorption were investigated. The results showed that the optimum quantity of EP was between 0.5 g and 1.0 g for 25 cm2 polymeric fabrics bags. Oil removal efficiency for 6 L/m2 of oil amount in the water was 52%-72%, 44%-63%, and 37%-48% for AF, PP, and SS composite materials, respectively. Oil/water selectivity analysis of different composite materials showed that AF composite material had a very high degree of hydrophobicity and oil sorption capacity of approximately 10.17 g/g. Both oil sorption kinetics and equilibrium studies were carried out, and the equilibrium process of composite materials was described well by the Langmuir isotherm, and the oil sorption kinetics of composite materials showed good correlation coefficients for the pseudo-second order kinetic model. Intra-particle diffusion studies showed that oil sorption mechanism was controlled by the three processes, involving in external liquid membrane diffusion, surface sorption, and intra-particle diffusion.
基金Funded by Science and Technology Support Program of Hubei Province of China(No.2015BAA111)
文摘A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.
文摘Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">pollution</span></span><span><span style="font-family:Verdana;"> is the proliferation of plastic waste. Among these </span><span style="font-family:Verdana;">wastes</span><span style="font-family:Verdana;"> there is expanded </span></span><span style="font-family:Verdana;">polystyrene (EPS), mainly from </span><span style="font-family:Verdana;">packaging</span><span style="font-family:Verdana;">. This study aims to valorize EPS waste by developing a composite material from EPS waste and wood waste. For this purpose, a resin made of EPS has been elaborated by dissolving EPS in acetone. That resin was used as a binder in volume proportions of 15%, 20%, 25% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 30% to stabilize the samples. Some of them were thermoformed. The method of elaboration was based on a device consisting of an extruder for mixing the constituents, and a manual press for shaping and compacting the samples. Analyses show that the drying time depends on the composition of the mixture. Increasing the resin content leads to reduce water absorption and porosity of the samples;it also contributes to homogenize the internal structure of the samples. However, for the same resin contents, the thermoformed samples are less porous;they have </span><span style="font-family:Verdana;">more</span><span style="font-family:Verdana;"> homogeneous internal structure</span><span style="font-family:Verdana;">;and</span><span style="font-family:Verdana;"> absorb less water than non-thermoformed samples.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their high flammability. This work aims to study the impact of the addition of mineral filler (clay) on the fire behaviour of wood-polystyrene composites and their mechanical properties. Thus, composites containing 25% of expanded polystyrene binder have been produced. On this base material, proportions of clay ranging from 0% to 15% were gradually added. These samples were elaborated by compaction and for some them, submitted to thermoforming after drying. Both kinds of sample were subjected to flame persistence test;flexural strength and compressive strength test were also measured. The results show that composites without mineral filler ignite continuously until the total consumption and when the mineral filler content increases the combustion time decreases. The addition of the mineral filler allows these composites to pass from class M3 of moderately flammable combustible materials to class M2 of hardly flammable materials, according to the M classification of construction and furnishing materials. The measurement of the mechanical properties shows that the strengths increase when the filler content goes from 0% to 10% and then decrease. This leads to set the optimum content of mineral filler around 10%.</span> </div>
基金financially supported by the National Natural Science Foundation of China (Nos. 51573102 and 51721091)
文摘Expanded graphite(EG) films exhibit potential use in a wide field including thermal management, conductive applications,and electromagnetic interference(EMI) shielding. However, their poor tensile strength and brittleness are crucial deficiencies for commercial applications. To address these defects, in our work, natural rubber(NR) is employed to improve EG films for better mechanical strength and flexibility. The origin of the strengthening effect of EG films by the addition of natural rubber mainly arises from the formation of a simulate shell structure. Compared to the neat EG films, the addition of merely 2 wt% NR can give rise to superior ductility. Further, the loading of 10 wt% NR realizes a significant mechanical enhancement of the EG/NR films, i.e., 2.4 and 11.4 times increase in tensile strength and elongation at break, respectively. Besides, EG/NR films containing 10 wt% NR can still sustain excellent thermal and electric conductivities of 173 W·m^-1·K^-1 and 75 S·cm^-1, respectively. Furthermore, a very high EMI of 41.4 dB is achieved as the film thickness reaches 50 μm. Thus, the lightweight EG/NR films with comprehensive performance as well as their virtue of green and simple large-scale preparation endow them with the possibility of designing next-generation flexible electronics.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金Supported by Applied Basic Research Project of Sichuan Province (No.2006J13-014)Innovation Fund of Panzhihua University
文摘In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.
文摘Erratum to:Journal of Thermal Science https://doi.org/10.1007/s11630-025-2140-3 The original article has been corrected.It was written:Sulfur-Free Expanded Graphite/Paraffin Composite Phase Change Materia with High Thermal Conductivity for Lithium-Ion Battery Thermal Management.
文摘The building sector significantly influences the environment, notably through resource consumption and waste production. Evaluating locally available resources and adopting sustainable development practices are essential to mitigate this impact. This study proposes the fabrication of a wood-polymer composite by recycling polystyrene and wood sawdust. Polystyrene was dissolved in a solvent to obtain a polymer matrix, which was then reinforced with recycled wood sawdust. The mixture was cold-pressed to form composite panels. Physical properties such as density and absorption, as well as mechanical properties like the modulus of elasticity and flexural strength, were examined. Results show that the physical and mechanical properties of the composites vary with the particle size distribution of the wood particles. The modulus of elasticity and flexural strength increase with particle size. The maximum values obtained for the modulus of elasticity and flexural strength are 842 MPa and 3.16 MPa, respectively. These physical and mechanical characteristics indicate that the developed composite material can be used to manufacture elements such as furniture, false ceilings, and lightweight partitions, thereby contributing to more sustainable construction practices.