期刊文献+

Preparation and Characterization of TiO_2/Expanded Graphite 被引量:1

Preparation and Characterization of TiO_2/Expanded Graphite
在线阅读 下载PDF
导出
摘要 In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high tempera- ture. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy (EDS), and differential scanning calorimetry (DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1 : 0.4, and the calcination and expansion temperature is in the range of 650--750 ~C. Under such conditions, the expansion volume of composites could reach 98 mE/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume. In order to obtain anatase TiO2/expanded graphite with high expansion volume, titania gel was introduced to expandable graphite surface by sol-gel process, and then the composite was expanded and calcined at high temperature. The samples were analysed by using scanning electron microscope (SEM), X-ray diffraction(XRD), energy disperse spectroscopy(EDS), and differential scanning calorimetry(DSC). The optimal conditions for preparation are as follows: the molar ratio of tetrabutyl orthotitanate to triethanolamine is 1∶0.4, and the calcination and expansion temperature is in the range of 650-750 °C. Under such conditions, the expansion volume of composites could reach 98 mL/g, and the mass loss ratio is less than 5%. The analysis shows that lower temperature and smaller particle size of graphite are helpful to the formation of anatase-type of TiO2, but larger particle size will lead to lower mass loss ratio, and higher temperature and larger particle size will lead to higher expansion volume.
出处 《Transactions of Tianjin University》 EI CAS 2010年第2期156-159,共4页 天津大学学报(英文版)
基金 Supported by Applied Basic Research Project of Sichuan Province (No.2006J13-014) Innovation Fund of Panzhihua University
关键词 expanded graphite titanium dioxide COMPOSITE PREPARATION 石墨表面 二氧化钛凝胶 扫描电子显微镜 差示扫描量热法 质量损失率 表征 制备 膨胀容积
  • 相关文献

参考文献10

  • 1Michael R H, Scot T M, Wonyong C et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95 (1) : 69-94.
  • 2Inagaki M, Nakazawa Y, Hirano Met al. Preparation of stable anatase-type TiO2 and its photocatalytic performance[J]. International Journal of Inorganic Materials, 2001, 3 (7) : 809-811.
  • 3Liu Yazi, Yang Shaogui, Hong Jun et al. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon[J]. Journal of Hazardous Materials, 2007, 142 (1/2) : 208-215.
  • 4Gianluca L P, Awang B, Duduku K et al. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper[J]. Journal of Hazardous Materials, 2008, 157 (2/3) : 209-219.
  • 5Narihito T, Hiroshi I, Norihiko Set al. Preparation of titanium dioxide/activated carbon composites using supercritical carbon dioxide [J]. Carbon, 2005, 43 (11): 2358-2365.
  • 6Edward C, Patricia Z, Silvia Pet al. Photocatalytic degradation of phenol using TiO2 nanocrystals supported on activated carbon[J]. Journal of Molecular Catalysis A: Chemical, 2005, 228 (1/2): 293-298.
  • 7Shi J W, Zheng J T, Wu Pet al. Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size [J]. Catalysis Communications, 2008, 9 (9) : 1846-1850.
  • 8Yuan R S, Guan R B, Liu P et al. Photocatalytic treatment of wastewater from paper mill by TiO2 loaded on activated carbon fibers [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293 (1-3) : 80-86.
  • 9ReynoldsIII R A, Greinke R A. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite [J]. Carbon, 2001, 39 (3): 479-481.
  • 10康飞宇,郑永平,兆恒,王海宁,王鲁宁,沈万慈,稻垣道夫.膨胀石墨对重油和生物体液的吸附—来自中国的研究(英文)[J].新型炭材料,2003,18(3):161-173. 被引量:43

二级参考文献44

  • 1Nishi Y, Iwashita N, lnagaki M. Evaluation of pore structure of exfoliated graphite by mercury porosimeter[J]. TANSO(Japanese),2002(201):31-34.
  • 2Inagaki M, Suwa T. Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs [ J ]. Carbon, 2001, 39,(6): 915-920.
  • 3Inagaki M, Tashiro R, Shnca T. Exfoliafion of graphite via residue compounds with sulfuric acid [ J ]. Res Reports of Aichi Inst of Tech, 2002(37B): 53-56.
  • 4Toyoda M, Moriya K, Inagaki M. Recovery of heavy oil from heavy oil soloed exfoliated graphite[ Z]. J Chem Soc Japan, 2000,217-220.
  • 5Inagaki M, Konno H, Toyoda M, et al. Sorption and recovery of heavy oils by using exfoliated graphite Part Ⅱ: Recovery of heavy oil and recycling of exfoliated graphite [ J ]. Desalination, 2000,128: 213-218.
  • 6Inagald M, Kawahara A, Konno H. Sorption and recovery of heavy oils using carbonized fir fibers[J]. Carbon, 2002, 40: 105-110.
  • 7Inagaki M, Kawahara A, Iwashita N, et al. Heavy oil sorption and recovery by using carbon fiber felts[ J]. Carbon, 2002, 40: 1487-1492.
  • 8Cao NZ, Shen WC, WenS Z, et al. Adsorption of polar organic compounds on expanded graphite[A]. Extended Abstracts of the European Conference, Carbon'96[C]. Newcastle upon Tyne,UK.256-257.
  • 9Inagaki M, Shibata K, Setou S, et al. Sorpion and recovery of heavy oils by using exfoliated graphite part Ⅲ: Trials fur practical applications applications[J]. Desalination, 2000, 1128(3): 219-222.
  • 10Toyoda M, Dogawa N, Seki T, et al. Sorption and recovery of Agrade heavy oil by using exfoliated graphite packed in plastic bag Trial for practical applications[J]. TANSO(Japanese), 2001(199) :166-169.

共引文献42

同被引文献47

  • 1于仁光,乔小晶,刘伟华,任慧.新型环保材料膨胀石墨的电化学法制备及性能[J].化工生产与技术,2003,10(6):6-8. 被引量:6
  • 2陈志刚,张勇,杨娟,邱滔.膨胀石墨的制备、结构和应用[J].江苏大学学报(自然科学版),2005,26(3):248-252. 被引量:53
  • 3张力学,丁金昌,谷亨杰.微波技术在有机合成中的应用[J].合成化学,1996,4(1):23-30. 被引量:74
  • 4宋克敏,陈希陵,付华景,冯玉玲,阎秋燕.制备低硫可膨胀石墨的新方法[J].合成化学,1996,4(3):282-284. 被引量:7
  • 5庞秀言,董兆洋,李晓雷.细鳞片石墨化学氧化法制备可膨胀石墨技术问题探讨[J].炭素,2007(2):35-37. 被引量:11
  • 6Ding X, Wang R, Zhang X, et al. A new magnetic expanded graphite for removal of oil leakage [ J ]. Ma- rine Pollution Bulletin,2014,81 ( 1 ) : 185 - 190.
  • 7Tsai K C, Kuan H C, Chou H W, et al. Preparation of expandable graphite using a hydrothermal method and flame-retardant properties of its halogen-free flame-retardant HDPE composites [ J ]. Journal of Poly- mer Research,2011,18(4) :483 -488.
  • 8Jin H Y, Yuan J, Hao H Y, et al. The exploration of a new adsorbent as MnO2 modified expanded graphite [ J]. Materials letters ,20B ,7(110) :69 - 72.
  • 9Krawczyk P, Skowroflski J M. Modification of expand- ed graphite resuhing in enhancement of electrochemical activity in the process of phenol oxidation [ J ]. Journal of Applied Electrochemistry,2010,40 ( 1 ) :91 - 98.
  • 10Paszkiewicz S, Szymczyk A, Pitalskr Z, et al. Elec- trical conductivity of poly ( ethylene terephthalate)/ex- panded graphite nanocomposites prepared by in situ polymerization [ J ]. Journal of Polymer Science B Poly- mer Physics,2012,50 (23) : 1645 - 1652.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部