High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ...High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple...This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.展开更多
With the advances of electronic information technology and computer network, especially the embedded technology, smart home is no more just a vision but being practical. The interoperability of heterogeneous devices a...With the advances of electronic information technology and computer network, especially the embedded technology, smart home is no more just a vision but being practical. The interoperability of heterogeneous devices and flexibility of devices' usage are two key problems that challenge the implementation of smart home. To deal with these two issues, this paper proposes an event-driven service oriented architecture using device profile for web services (DPWS). DPWS inherits the advantages of the traditional web services in achieving interoperability without dependence on platform, while improving service discovery and security as well as being optimized for deploying on resource constrained devices. By providing a visual interface for describing a service workflow (SW), the user can easily customize the actions of devices by services composition. Devices automatically cooperate without user's intervention to complete required business logic. This is achieved by fully exploiting the eventing capabilities on DPWS enabled home devices. Finally, a home theater scenario is given to illustrate the event driven mechanism for the SW in the proposed smart home framework.展开更多
This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main ob...This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency.展开更多
Hefei Light Source(HLS)-II is a vacuum ultraviole(VUV) synchrotron light source. A major upgrade of the light source was finished at the end of 2014. The timing system was rebuilt using compact peripheral component in...Hefei Light Source(HLS)-II is a vacuum ultraviole(VUV) synchrotron light source. A major upgrade of the light source was finished at the end of 2014. The timing system was rebuilt using compact peripheral component interconnect(cPCI) event-driven hardware to meet synchronization requirements of the machine. In the new system, the c PCI event-driven products manufactured by the micro-research finland(MRF) Oy are employed to achieve about 100 output signals with different interfaces. Device supports and drivers developed for common Experimental Physics and Industrial Control System(EPICS) records are used to access the registers on the timing modules. Five c PCI-bus input/output controllers(IOCs) distributed in different areas of the light source host timing modules for various subsystems. The delay resolution of this system is 9.8 ns for most channels and 9 ps for the channels used for triggering the electron gun and the injection kickers. The measured rms jitter of the output signal is less than 27 ps. Using the bucket chooser, this system enables the HLS-II to fill the storage ring with any designated bunch pattern. Benefitting from this upgrade, brightness and performance of the light source are significantly improved.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite chall...Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement.展开更多
With the rapid development of 3D Digital City, the focus of research has shifted from 3D city modeling and geo-database construction to 3D geo-database service and maintenance. The frequent modifications on geometry, ...With the rapid development of 3D Digital City, the focus of research has shifted from 3D city modeling and geo-database construction to 3D geo-database service and maintenance. The frequent modifications on geometry, texture, attribute, and topology present a great challenge to the 3D geo-database updating.This article proposes an event-driven spatiotemporal database model (ESDM) that combines the historical and present 3D city models with the semantic classification and state expression, triggered by changing events predefined. In addition, a corresponding dynamic updating method based on adaptive matching algorithm is presented to perform the dynamic updating operation for the complex 3D city models automatically, according to the compound matching of semantics, attributes, and spatial locations. finally, the validity and feasibility of the proposed ESDM and its updating method are demonstrated through a 3D geo-database with more than 1.5 million 3D city models.展开更多
The conventional Kibble–Zurek mechanism,describing driven dynamics across critical points based on the adiabatic-impulse scenario(AIS),has attracted broad attention.However,the driven dynamics at the tricritical poin...The conventional Kibble–Zurek mechanism,describing driven dynamics across critical points based on the adiabatic-impulse scenario(AIS),has attracted broad attention.However,the driven dynamics at the tricritical point with two independent relevant directions have not been adequately studied.Here,we employ the time-dependent variational principle to study the driven critical dynamics at a one-dimensional supersymmetric Ising tricritical point.For the relevant direction along the Ising critical line,the AIS apparently breaks down.Nevertheless,we find that the critical dynamics can still be described by finite-time scaling in which the driving rate has a dimension of r_(μ)=z+1/v_(μ)with z and v_(μ)being the dynamic exponent and correlation length exponent in this direction,respectively.For driven dynamics along another direction,the driving rate has a dimension of r_(p)=z+1/v_(p)with v_(p)being another correlation length exponent.Our work brings a new fundamental perspective into nonequilibrium critical dynamics near the tricritical point,which could be realized in programmable quantum processors in Rydberg atomic systems.展开更多
The mobile communication is nowadays one of the basic needs of humanity. It is essential to the flourishing of human beings. Considering this reality, the need to use its mobile phone is become more important and dive...The mobile communication is nowadays one of the basic needs of humanity. It is essential to the flourishing of human beings. Considering this reality, the need to use its mobile phone is become more important and diversified. The subscribers of the various mobile telephone operators are increasingly demanding. This situation poses the problems of the cover mobile network to the operators and leads them to opt for several solutions and investments. The mobile operators in order to satisfy their customers use a policy of pushing the limits of network coverage in time and space for festive moments in targeted zones. Thus, we have conducted a study on the topic: study of a kit of GSM radio site for event-driven movable coverage. This work is applied to GSM (Global system mobile) network of the operator Orange-Ci, leader of mobile telephony in Ivory Coast. We thus proceeded under investigation initially of the various aspects of the ordinary sites (motionless radio site) which are already deployed with Orange-Ci in order to impregnate us infrastructures and equipment used. This study revealed us that a radio site comprises 4 parts: infrastructures, installations and energy equipments, installations and radio equipments, and installations and equipment of transmission. After the first analysis, we made a study of the movable site. The study of the movable site enabled us to see the various possible solutions to fulfill the basic functions of a movable radio site. After analysis we retained that our radio site will be built on a truck on which a mast of 25 m maximum length for the antennas will be embarked, it will be fed by a generator also embarked on the truck and the solution of transmission selected is the transmission by satellite more precisely technology VSAT. We choose the various equipments (radio, transmission, energy) according to features which we defined to constitute the kit of movable radio site.展开更多
As the number of distributed power supplies increases on the user side,smart grids are becoming larger and more complex.These changes bring new security challenges,especially with the widespread adop-tion of data-driv...As the number of distributed power supplies increases on the user side,smart grids are becoming larger and more complex.These changes bring new security challenges,especially with the widespread adop-tion of data-driven control methods.This paper introduces a novel black-box false data injection attack(FDIA)method that exploits the measurement modules of distributed power supplies within smart grids,highlighting its effectiveness in bypassing conventional security measures.Unlike traditional methods that focus on data manipulation within communication networks,this approach directly injects false data at the point of measurement,using a generative adversarial network(GAN)to generate stealthy attack vectors.This method requires no detailed knowledge of the target system,making it practical for real-world attacks.The attack’s impact on power system stability is demonstrated through experiments,high-lighting the significant cybersecurity risks introduced by data-driven algorithms in smart grids.展开更多
Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play i...Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality,their impact on nonequilibrium critical dynamics has not been extensively explored.In this work,we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model.We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors.In addition,improved scaling relations are obtained from the expansion of the full scaling form.We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.展开更多
Current research on robot calibration can be roughly classified into two categories,and both of them have certain inherent limitations.Model-based methods are difficult to model and compensate the pose errors arising ...Current research on robot calibration can be roughly classified into two categories,and both of them have certain inherent limitations.Model-based methods are difficult to model and compensate the pose errors arising from configuration-dependent geometric and non-geometric source errors,whereas the accuracy of data-driven methods depends on a large amount of measurement data.Using a 5-DOF(degrees of freedom)hybrid machining robot as an exemplar,this study presents a model data-driven approach for the calibration of robotic manipulators.An f-DOF realistic robot containing various source errors is visualized as a 6-DOF fictitious robot having error-free parameters,but erroneous actuated/virtual joint motions.The calibration process essentially involves four steps:(1)formulating the linear map relating the pose error twist to the joint motion errors,(2)parameterizing the joint motion errors using second-order polynomials in terms of nominal actuated joint variables,(3)identifying the polynomial coefficients using the weighted least squares plus principal component analysis,and(4)compensating the compensable pose errors by updating the nominal actuated joint variables.The merit of this approach is that it enables compensation of the pose errors caused by configuration-dependent geometric and non-geometric source errors using finite measurement configurations.Experimental studies on a prototype machine illustrate the effectiveness of the proposed approach.展开更多
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret...Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.展开更多
Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herei...Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.展开更多
Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-025-01545-x The publication of this article unfortunately contained mistakes.Equation(14)was not correct.The corrected equation is given below.
Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative techn...Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative technology has particularly advanced the development of metamaterials-engineered materials whose unique properties arise from their structure rather than composition-unlocking immense potential in fields ranging from aerospace to biomedical engineering.展开更多
文摘High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1).
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
基金supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61104155)the Fundamental Research Funds for theCentral Universities,China(Grant Nos.JUDCF13037 and JUSRP51322B)+1 种基金the Programme of Introducing Talents of Discipline to Universities,China(GrantNo.B12018)the Jiangsu Innovation Program for Graduates,China(Grant No.CXZZ13-0740)
文摘This paper aims to improve the performance of a class of distributed parameter systems for the optimal switching of actuators and controllers based on event-driven control. It is assumed that in the available multiple actuators, only one actuator can receive the control signal and be activated over an unfixed time interval, and the other actuators keep dormant. After incorporating a state observer into the event generator, the event-driven control loop and the minimum inter-event time are ultimately bounded. Based on the event-driven state feedback control, the time intervals of unfixed length can be obtained. The optimal switching policy is based on finite horizon linear quadratic optimal control at the beginning of each time subinterval. A simulation example demonstrate the effectiveness of the proposed policy.
文摘With the advances of electronic information technology and computer network, especially the embedded technology, smart home is no more just a vision but being practical. The interoperability of heterogeneous devices and flexibility of devices' usage are two key problems that challenge the implementation of smart home. To deal with these two issues, this paper proposes an event-driven service oriented architecture using device profile for web services (DPWS). DPWS inherits the advantages of the traditional web services in achieving interoperability without dependence on platform, while improving service discovery and security as well as being optimized for deploying on resource constrained devices. By providing a visual interface for describing a service workflow (SW), the user can easily customize the actions of devices by services composition. Devices automatically cooperate without user's intervention to complete required business logic. This is achieved by fully exploiting the eventing capabilities on DPWS enabled home devices. Finally, a home theater scenario is given to illustrate the event driven mechanism for the SW in the proposed smart home framework.
文摘This paper addresses the co-design problem of decentralized dynamic event-triggered communication and active suspension control for an in-wheel motor driven electric vehicle equipped with a dynamic damper. The main objective is to simultaneously improve the desired suspension performance caused by various road disturbances and alleviate the network resource utilization for the concerned in-vehicle networked suspension system. First, a T-S fuzzy active suspension model of an electric vehicle under dynamic damping is established. Second,a novel decentralized dynamic event-triggered communication mechanism is developed to regulate each sensor's data transmissions such that sampled data packets on each sensor are scheduled in an independent manner. In contrast to the traditional static triggering mechanisms, a key feature of the proposed mechanism is that the threshold parameter in the event trigger is adjusted adaptively over time to reduce the network resources occupancy. Third, co-design criteria for the desired event-triggered fuzzy controller and dynamic triggering mechanisms are derived. Finally, comprehensive comparative simulation studies of a 3-degrees-of-freedom quarter suspension model are provided under both bump road disturbance and ISO-2631 classified random road disturbance to validate the effectiveness of the proposed co-design approach. It is shown that ride comfort can be greatly improved in either road disturbance case and the suspension deflection, dynamic tyre load and actuator control input are all kept below the prescribed maximum allowable limits, while simultaneously maintaining desirable communication efficiency.
基金Supported by the National Natural Science Foundation of China(Nos.11375177 and 11375186)
文摘Hefei Light Source(HLS)-II is a vacuum ultraviole(VUV) synchrotron light source. A major upgrade of the light source was finished at the end of 2014. The timing system was rebuilt using compact peripheral component interconnect(cPCI) event-driven hardware to meet synchronization requirements of the machine. In the new system, the c PCI event-driven products manufactured by the micro-research finland(MRF) Oy are employed to achieve about 100 output signals with different interfaces. Device supports and drivers developed for common Experimental Physics and Industrial Control System(EPICS) records are used to access the registers on the timing modules. Five c PCI-bus input/output controllers(IOCs) distributed in different areas of the light source host timing modules for various subsystems. The delay resolution of this system is 9.8 ns for most channels and 9 ps for the channels used for triggering the electron gun and the injection kickers. The measured rms jitter of the output signal is less than 27 ps. Using the bucket chooser, this system enables the HLS-II to fill the storage ring with any designated bunch pattern. Benefitting from this upgrade, brightness and performance of the light source are significantly improved.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金the support from the National Natural Science Foundation of China(52202306)Program from Guangdong Introducing Innovative and Entrepreneurial Teams(2019ZT08L101 and RCTDPT-2020-001)+1 种基金Shenzhen Key Laboratory of Eco-materials and Renewable Energy(ZDSYS20200922160400001)the Provincial Talent Plan of Guangdong(2023TB0012).
文摘Methane(CH4),the predominant component of natural gas and shale gas,is regarded as a promising carbon feedstock for chemical synthesis[1].However,considering the extreme stability of CH4 molecules,it's quite challenging in simultaneously achieving high activity and selectivity for target products under mild conditions,especially when synthesizing high-value C2t chemicals such as ethanol[2].The conversion of methane to ethanol by photocatalysis is promising for achieving transformation under ambient temperature and pressure conditions.Currently,the apparent quantum efficiency(AQE)of solar-driven methane-to-ethanol conversion is generally below 0.5%[3,4].Furthermore,the stability of photocatalysts remains inadequate,offering substantial potential for further improvement.
基金This study is supported by the National Natural Science Foundation of China [grant number 41301439], the Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing [grant number 11I01], [grant number 15I03], and the Guangdong Province Science and Technology Plan Project (grant number 2015A010103010)
文摘With the rapid development of 3D Digital City, the focus of research has shifted from 3D city modeling and geo-database construction to 3D geo-database service and maintenance. The frequent modifications on geometry, texture, attribute, and topology present a great challenge to the 3D geo-database updating.This article proposes an event-driven spatiotemporal database model (ESDM) that combines the historical and present 3D city models with the semantic classification and state expression, triggered by changing events predefined. In addition, a corresponding dynamic updating method based on adaptive matching algorithm is presented to perform the dynamic updating operation for the complex 3D city models automatically, according to the compound matching of semantics, attributes, and spatial locations. finally, the validity and feasibility of the proposed ESDM and its updating method are demonstrated through a 3D geo-database with more than 1.5 million 3D city models.
基金supported by the National Natural Science Foundation of China(Grant Nos.12222515,12075324 for S.Yin,and 12347107,1257-4160 for Y.F.Jiang)the National Key R&D Program of China(Grant No.2022YFA1402703 for Y.F.Jiang)+1 种基金the Science and Technology Projects in Guangdong Province(Grant No.2021QN02X561 for S.Yin)the Science and Technology Projects in Guangzhou City(Grant No.2025A04J5408 for S.Yin)。
文摘The conventional Kibble–Zurek mechanism,describing driven dynamics across critical points based on the adiabatic-impulse scenario(AIS),has attracted broad attention.However,the driven dynamics at the tricritical point with two independent relevant directions have not been adequately studied.Here,we employ the time-dependent variational principle to study the driven critical dynamics at a one-dimensional supersymmetric Ising tricritical point.For the relevant direction along the Ising critical line,the AIS apparently breaks down.Nevertheless,we find that the critical dynamics can still be described by finite-time scaling in which the driving rate has a dimension of r_(μ)=z+1/v_(μ)with z and v_(μ)being the dynamic exponent and correlation length exponent in this direction,respectively.For driven dynamics along another direction,the driving rate has a dimension of r_(p)=z+1/v_(p)with v_(p)being another correlation length exponent.Our work brings a new fundamental perspective into nonequilibrium critical dynamics near the tricritical point,which could be realized in programmable quantum processors in Rydberg atomic systems.
文摘The mobile communication is nowadays one of the basic needs of humanity. It is essential to the flourishing of human beings. Considering this reality, the need to use its mobile phone is become more important and diversified. The subscribers of the various mobile telephone operators are increasingly demanding. This situation poses the problems of the cover mobile network to the operators and leads them to opt for several solutions and investments. The mobile operators in order to satisfy their customers use a policy of pushing the limits of network coverage in time and space for festive moments in targeted zones. Thus, we have conducted a study on the topic: study of a kit of GSM radio site for event-driven movable coverage. This work is applied to GSM (Global system mobile) network of the operator Orange-Ci, leader of mobile telephony in Ivory Coast. We thus proceeded under investigation initially of the various aspects of the ordinary sites (motionless radio site) which are already deployed with Orange-Ci in order to impregnate us infrastructures and equipment used. This study revealed us that a radio site comprises 4 parts: infrastructures, installations and energy equipments, installations and radio equipments, and installations and equipment of transmission. After the first analysis, we made a study of the movable site. The study of the movable site enabled us to see the various possible solutions to fulfill the basic functions of a movable radio site. After analysis we retained that our radio site will be built on a truck on which a mast of 25 m maximum length for the antennas will be embarked, it will be fed by a generator also embarked on the truck and the solution of transmission selected is the transmission by satellite more precisely technology VSAT. We choose the various equipments (radio, transmission, energy) according to features which we defined to constitute the kit of movable radio site.
基金supported by the National Natural Science Foundation of China(62302234).
文摘As the number of distributed power supplies increases on the user side,smart grids are becoming larger and more complex.These changes bring new security challenges,especially with the widespread adop-tion of data-driven control methods.This paper introduces a novel black-box false data injection attack(FDIA)method that exploits the measurement modules of distributed power supplies within smart grids,highlighting its effectiveness in bypassing conventional security measures.Unlike traditional methods that focus on data manipulation within communication networks,this approach directly injects false data at the point of measurement,using a generative adversarial network(GAN)to generate stealthy attack vectors.This method requires no detailed knowledge of the target system,making it practical for real-world attacks.The attack’s impact on power system stability is demonstrated through experiments,high-lighting the significant cybersecurity risks introduced by data-driven algorithms in smart grids.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104109,12222515,and 12075324)the Science and Technology Projects in Guangzhou(Grant No.2024A04J2092)the Science and Technology Projects in Guangdong Province(Grant No.211193863020).
文摘Driven critical dynamics in quantum phase transitions holds significant theoretical importance,and also has practical applications in fast-developing quantum devices.While scaling corrections have been shown to play important roles in fully characterizing equilibrium quantum criticality,their impact on nonequilibrium critical dynamics has not been extensively explored.In this work,we investigate the driven critical dynamics in a two-dimensional quantum Heisenberg model.We find that in this model the scaling corrections arising from both finite system size and finite driving rate must be incorporated into the finite-time scaling form in order to properly describe the nonequilibrium scaling behaviors.In addition,improved scaling relations are obtained from the expansion of the full scaling form.We numerically verify these scaling forms and improved scaling relations for different starting states using the nonequilibrium quantum Monte Carlo algorithm.
基金Supported by National Natural Science Foundation of China(Grant Nos.52325501,U24B2047).
文摘Current research on robot calibration can be roughly classified into two categories,and both of them have certain inherent limitations.Model-based methods are difficult to model and compensate the pose errors arising from configuration-dependent geometric and non-geometric source errors,whereas the accuracy of data-driven methods depends on a large amount of measurement data.Using a 5-DOF(degrees of freedom)hybrid machining robot as an exemplar,this study presents a model data-driven approach for the calibration of robotic manipulators.An f-DOF realistic robot containing various source errors is visualized as a 6-DOF fictitious robot having error-free parameters,but erroneous actuated/virtual joint motions.The calibration process essentially involves four steps:(1)formulating the linear map relating the pose error twist to the joint motion errors,(2)parameterizing the joint motion errors using second-order polynomials in terms of nominal actuated joint variables,(3)identifying the polynomial coefficients using the weighted least squares plus principal component analysis,and(4)compensating the compensable pose errors by updating the nominal actuated joint variables.The merit of this approach is that it enables compensation of the pose errors caused by configuration-dependent geometric and non-geometric source errors using finite measurement configurations.Experimental studies on a prototype machine illustrate the effectiveness of the proposed approach.
基金Supported in part by Science Center for Gas Turbine Project(Project No.P2022-DC-I-003-001)National Natural Science Foundation of China(Grant No.52275130).
文摘Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM.
基金financially supported by the Key Research&Development Program of Guangxi(No.GuiKeAB22080088)the Joint Project on Regional High-Incidence Diseases Research of Guangxi Natural Science Foundation(No.2023GXNSFDA026023)+3 种基金the Natural Science Foundation of Guangxi(No.2023JJA140322)the National Natural Science Foundation of China(No.82360372)the High-level Medical Expert Training Program of Guangxi“139 Plan Funding(No.G202003010)the Medical Appropriate Technology Development and Popularization and Application Project of Guangxi(No.S2020099)。
文摘Acute lung injury(ALI)was characterized by excessive reactive oxygen species(ROS)levels and inflammatory response in the lung.Scavenging ROS could inhibit the excessive inflammatory response,further treating ALI.Herein,we designed a novel nanozyme(P@Co)comprised of polydopamine(PDA)nanoparticles(NPs)loading with ultra-small Co,combining with near infrared(NIR)irradiation,which could efficiently scavenge intracellular ROS and suppress inflammatory responses against ALI.For lipopolysaccharide(LPS)induced macrophages,P@Co+NIR presented excellent antioxidant and anti-inflammatory capacities through lowering intracellular ROS levels,decreasing the expression levels of interleukin-6(IL-6)and tumor necrosis factor-α(TNF-α)as well as inducing macrophage M2 directional polarization.Significantly,it displayed the outstanding activities of lowering acute lung inflammation,relieving diffuse alveolar damage,and up-regulating heat shock protein 70(HSP70)expression,resulting in synergistic enhanced ALI therapy effect.It offers a novel strategy for the clinical treatment of ROS related diseases.
文摘Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-025-01545-x The publication of this article unfortunately contained mistakes.Equation(14)was not correct.The corrected equation is given below.
文摘Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative technology has particularly advanced the development of metamaterials-engineered materials whose unique properties arise from their structure rather than composition-unlocking immense potential in fields ranging from aerospace to biomedical engineering.