期刊文献+
共找到3,053篇文章
< 1 2 153 >
每页显示 20 50 100
High-Entropy Materials:A New Paradigm in the Design of Advanced Batteries
1
作者 Yangmei Xin Minmin Zhu +1 位作者 Haizhong Zhang Xinghui Wang 《Nano-Micro Letters》 2026年第1期1-52,共52页
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ... High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies. 展开更多
关键词 High entropy alloys High entropy oxides High entropy MXenes High entropy battery materials Machine learning
在线阅读 下载PDF
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
2
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
High‑Entropy Amorphous Catalysts for Water Electrolysis:A New Frontier
3
作者 Gaihong Wang Zhijie Chen +4 位作者 Jinliang Zhu Jiangzhou Xie Wei Wei Yi‑Ming Yan Bing‑Jie Ni 《Nano-Micro Letters》 2026年第3期141-179,共39页
High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environm... High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability. 展开更多
关键词 High‐entropy amorphous catalysts ELECTROCATALYSIS Water splitting Structural disorder Multimetallic synergy
在线阅读 下载PDF
First-Principles Study on the Mechanical and Thermodynamic Properties of (NbZrHfTi)C High-Entropy Ceramics
4
作者 Yonggang Tong Kai Yang +5 位作者 Pengfei Li Yongle Hu Xiubing Liang Jian Liu Yejun Li Jingzhong Fang 《Computers, Materials & Continua》 2026年第1期353-367,共15页
(NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperatu... (NbZrHfTi)C high-entropy ceramics,as an emerging class of ultra-high-temperature materials,have garnered significant interest due to their unique multi-principal-element crystal structure and exceptional hightemperature properties.This study systematically investigates the mechanical properties of(NbZrHfTi)C high-entropy ceramics by employing first-principles density functional theory,combined with the Debye-Grüneisen model,to explore the variations in their thermophysical properties with temperature(0–2000 K)and pressure(0–30 GPa).Thermodynamically,the calculated mixing enthalpy and Gibbs free energy confirm the feasibility of forming a stable single-phase solid solution in(NbZrHfTi)C.The calculated results of the elastic stiffness constant indicate that the material meets the mechanical stability criteria of the cubic crystal system,further confirming the structural stability.Through evaluation of key mechanical parameters—bulk modulus,shear modulus,Young’s modulus,and Poisson’s ratio—we provide comprehensive insight into the macro-mechanical behaviour of the material and its correlation with the underlying microstructure.Notably,compared to traditional binary carbides and their average properties,(NbZrHfTi)C exhibits higher Vickers hardness(Approximately 28.5 GPa)and fracture toughness(Approximately 3.4 MPa⋅m^(1/2)),which can be primarily attributed to the lattice distortion and solid-solution strengthening mechanism.The study also utilizes the quasi-harmonic approximation method to predict the material’s thermophysical properties,including Debye temperature(initial value around 563 K),thermal expansion coefficient(approximately 8.9×10^(−6) K−1 at 2000 K),and other key parameters such as heat capacity at constant volume.The results show that within the studied pressure and temperature ranges,(NbZrHfTi)C consistently maintains a stable phase structure and good thermomechanical properties.The thermal expansion coefficient increasing with temperature,while heat capacity approaches the Dulong-Petit limit at elevated temperatures.These findings underscore the potential of(NbZrHfTi)C applications in ultra-high temperature thermal protection systems,cutting tool coatings,and nuclear structural materials. 展开更多
关键词 High entropy ceramics mechanical properties electronic properties thermodynamic properties
在线阅读 下载PDF
Microstructures and mechanical properties of friction stir welded and processed high entropy alloys
5
作者 Kang Chen Jian Miao +2 位作者 Huijie Zhang Qi Cheng Yingling Wang 《Defence Technology(防务技术)》 2026年第1期80-108,共29页
High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as not... High entropy alloys(HEAs)have recently attracted significant attention due to their exceptional mechanical properties and potential applications across various fields.Friction stir welding and processing(FSW/P),as notable solid-state welding and processing techniques,have been proved effectiveness in enhancing microstructures and mechanical properties of HEAs.This review article summarizes the current status of FSW/P of HEAs.The welding materials and conditions used for FSW/P in HEAs are reviewed and discussed.The effects of FSW/P on the evolutions of grain structure,texture,dislocation,and secondary phase for different HEAs are highlighted.Furthermore,the influences of FSW/P on the mechanical properties of various HEAs are analyzed.Finally,potential applications,challenges,and future directions of FSW/P in HEAs are forecasted.Overall,FSW/P enable to refine grains of HEAs through dynamic recrystallization and to activate diverse deformation mechanisms of HEAs through tailoring phase structures,thereby significantly improving the strength,hardness,and ductility of both single-and dual-phase HEAs.Future progress in this field will rely on comprehensive optimization of processing parameters and alloy composition,integration of multi-scale modeling with advanced characterization for in-depth exploration of microstructural mechanisms,systematic evaluation of functional properties,and effective bridging of the gap between laboratory research and industrial application.The review aims to provide an overview of recent advancements in the FSW/P of HEAs and encourage further research in this area. 展开更多
关键词 High entropy alloys Friction stir welding/processing MICROSTRUCTURE Mechanical property
在线阅读 下载PDF
基于改进FAHP-Entropy法的液化天然气储罐安全评价
6
作者 谭建华 李垚银 +3 位作者 高文颖 张俊英 石军 马匡 《油气田地面工程》 2025年第12期44-49,共6页
为了提高液化天然气储罐安全管理水平,针对液化天然气储罐内介质的基本属性以及储罐的基本特点,提出了一种基于改进模糊层次分析法(FAHP)和熵权法(Entropy)的天然气储罐安全评价方法。从人员、设备、环境以及管理的角度出发,建立储罐评... 为了提高液化天然气储罐安全管理水平,针对液化天然气储罐内介质的基本属性以及储罐的基本特点,提出了一种基于改进模糊层次分析法(FAHP)和熵权法(Entropy)的天然气储罐安全评价方法。从人员、设备、环境以及管理的角度出发,建立储罐评价指标体系,根据改进FAHP和Entropy法的应用步骤,确定各评价指标的综合权重,引入三角模糊数(TRFN)方法,确定模糊关系矩阵。以我国某液化天然气储罐为例,开展基于改进FAHP-Entropy法的液化天然气储罐安全评价实例研究。研究表明:使用改进FAHP-Entropy法开展液化天然气储罐安全评价可以对储罐面临的关键风险因素进行识别,对于本次研究的案例而言,在人员、设备、管理及环境方面均处于“较安全”水平,其中,设备方面的评分最高。研究结果显示,使用改进FAHP-Entropy法对液化天然气储罐进行安全风险识别,有助于提高液化天然气储罐的安全管理水平。 展开更多
关键词 模糊层次分析法(FAHP) 熵权法(entropy) 三角模糊数(TRFN) 液化天然气储罐 安全评价
在线阅读 下载PDF
Preparation of FeCoNi medium entropy alloy from Fe^(3+)-Co^(2+)-Ni^(2+)solution system 被引量:1
7
作者 Zongyou Cheng Qing Zhao +3 位作者 Mengjie Tao Jijun Du Xingxi Huang Chengjun Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期92-101,共10页
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro... In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity. 展开更多
关键词 medium entropy alloy SOL-GEL CO-PRECIPITATION carbothermal hydrogen reduction
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
8
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
9
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Excellent ductilization and strengthening of lightweight refractory high-entropy alloys via stable B2 nanoprecipitates 被引量:3
10
作者 Rui-Xin Wang Wei-Jian Shen +5 位作者 Yu-Jie Chen Yuan-Lin Ai Shun Li Shu-Xin Bai Yu Tang Qian Yu 《Rare Metals》 2025年第3期2128-2135,共8页
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord... Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size. 展开更多
关键词 dislocation shearingmeanwhilethe strengthening effect improve mechanical properties local chemical order lco cannot lightweight refractory high entropy alloys b precipitates ordering characteristic strengthening
原文传递
High temperature oxidation behavior of TiNbMoAlSi refractory high entropy alloy developed by electron beam additive manufacturing 被引量:3
11
作者 Zhe Li Liang Wang +9 位作者 Yong Yang Chen Liu Baoxian Su Qingda Zhang Zhiwen Li Jiaqi Huang Binbin Wang Liangshun Luo Ruirun Chen Yanqing Su 《Journal of Materials Science & Technology》 2025年第12期131-146,共16页
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo... Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys. 展开更多
关键词 Refractory high entropy alloy OXIDATION Electron beam freeform fabrication Multilayer oxide First principles calculations
原文传递
NOTES ON THE LOG-MINKOWSKI INEQUALITY OF CURVATURE ENTROPY 被引量:1
12
作者 Deyi LI Lei MA Chunna ZENG 《Acta Mathematica Scientia》 2025年第1期16-26,共11页
An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of c... An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given. 展开更多
关键词 convex bodies the log-Minkowski inequality curvature entropy the log-Minkowski inequality of curvature entropy
在线阅读 下载PDF
High-entropy materials for solid oxide cells 被引量:1
13
作者 Qinqin Wang Wei Kong +1 位作者 Shanshan Jiang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2598-2620,共23页
Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revol... Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs. 展开更多
关键词 high-entropy materials solid oxide cells configurational entropy electrochemical reaction structural stability
在线阅读 下载PDF
Optimizing strength-ductility in NiCoMn medium entropy alloys with atomic-scale rapid composition design 被引量:1
14
作者 Qing Gao Weibing Wang +6 位作者 Junqiang Ren Wei Li Biao Sang Le Li Qi Wang Xuefeng Lu Jisen Qiao 《Journal of Materials Science & Technology》 2025年第12期71-85,共15页
The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (... The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs. 展开更多
关键词 Medium entropy alloys Molecular dynamics Stacking fault energy Shear modulus Ultimate tensile strength DUCTILITY
原文传递
Novel entropy-stabilized spinel materials and their potential application in high-temperature industry:[(Mg_(x)Zn_((1-x)/2)Cu_((1-x)/2))(Al_(0.9)Fe_(0.1))_(2)O_(4)](x=0.5,0.6,0.7,and 0.8) 被引量:1
15
作者 Bo-Kang Li Lv-Ping Fu +2 位作者 Hua-Zhi Gu Ao Huang Shuang Yang 《Rare Metals》 2025年第8期5844-5858,共15页
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f... High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃. 展开更多
关键词 entropy-stabilized spinel Thermal conductivity High-temperature performance Configurational entropy
原文传递
Unraveling the cryogenic formability in high entropy alloy sheets under complex stress conditions 被引量:1
16
作者 Ke-Yan Wang Zi-Jian Cheng +6 位作者 Zhi-Liang Ning Hai-Ping Yu Parthiban Ramasamy Jürgen Eckert Jian-Fei Sun Alfonso H.W.Ngan Yong-Jiang Huang 《Rare Metals》 2025年第2期1332-1341,共10页
This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress condition... This work investigates how temperature and microstructural evolution affect the formability of face-centered cubic(fcc)structured CoCrFeNiMn_(0.75)Cu_(0.25) high entropy alloy(HEA)sheets under complex stress conditions.Erichsen cupping tests were conducted to quantitatively evaluate the deformation capacity at room temperature(298 K)and cryogenic temperatures.The findings reveal a strong temperature dependence on the formability of the HEA.A decrease in the deformation temperature from 298 to 93 K causes a significant increase in both the Erichsen index(IE)(from 9.8 to 12.4 mm)and the expansion rate(δ)of surface area(from 51.6%to 76.3%),as well as a reduction in the average deviation(η)of thickness(from 55.1%to 44.4%),signifying its ultrahigh formability and uniform deformation capability at cryogenic temperature.This enhancement is attributed to the transition in the deformation mechanism from single dislocation slip at 298 K to a cooperative of plastic deformation mechanisms at 93 K,involving dislocation slip,stacking faults(SFs),Lomer-Cottrell(L-C)locks and multi-scale nanotwins.The lower stacking fault energy of the alloy facilitates these deformation mechanisms,particularly the formation of SFs and nanotwins,which enhance ductility and strength by providing additional pathways for plastic deformation.These mechanisms collectively contribute to delaying plastic instability,thereby improving the overall formability.This work provides a comprehensive understanding of the underlying reasons for the enhanced formability of HEAs at cryogenic temperatures,offering valuable insights for their practical use in challenging environments. 展开更多
关键词 High entropy alloys Cryogenic formability Deformation mechanism Complex stress
原文传递
Application of Sr_(2)FeMoO_(6−δ)-based medium entropy oxide as an anode internal reforming catalyst in solid oxide fuel cells fueled by low -concentration coal mine methane 被引量:1
17
作者 Chuanqi Sun Jinke Zhang +7 位作者 Xiuyang Qian Mingfei Li Hongming Liu Jiangbo Dong Jinda Li Wenlin Yang Mumin Rao Yihan Ling 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2650-2658,共9页
Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxi... Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs. 展开更多
关键词 solid oxide fuel cell medium entropy oxide low-concentration coal mine methane anode internal reforming catalyst electro-chemical performance
在线阅读 下载PDF
Enhanced 3D printing and crack control in melt-grown eutectic ceramic composites with high-entropy alloy doping 被引量:1
18
作者 Zhonglin Shen Haijun Su +10 位作者 Minghui Yu Yinuo Guo Yuan Liu Hao Jiang Xiang Li Dong Dong Peixin Yang Jiatong Yao Min Guo Zhuo Zhang Wei Ren 《Journal of Materials Science & Technology》 2025年第6期64-78,共15页
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin... As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing. 展开更多
关键词 Laser powder bed fusion Eutectic ceramic composite High entropy alloy doping
原文传递
Multi-scale analysis of microstructural evolution and atomic bonding mechanisms in CoCrFeMnNi high-entropy alloys upon cold spray impact 被引量:1
19
作者 R.Nikbakht M.Saadati +2 位作者 H.S.Kim M.Jahazi R.R.Chromik 《Journal of Materials Science & Technology》 2025年第5期263-277,共15页
Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic pla... Large interfacial strains in particles are crucial for promoting bonding in cold spraying(CS),initiated either by adiabatic shear instability(ASI)due to softening prevailing over strain hardening or by hydrostatic plasticity,which is claimed to promote bonding even without ASI.A thorough microstructural analysis is vital to fully understand the bonding mechanisms at play during microparticle impacts and throughout the CS process.In this study,the HEA CoCrFeMnNi,known for its relatively high strain hardening and resistance to softening,was selected to investigate the microstructure characteristics and bonding mech-anisms in CS.This study used characterization techniques covering a range of length scales,including electron channeling contrast imaging(ECCI),electron backscatter diffraction(EBSD),and high-resolution transmission microscopy(HR-TEM),to explore the microstructure characteristics of bonding and overall structure development of CoCrFeMnNi microparticles after impact in CS.HR-TEM lamellae were prepared using focused ion beam milling.Additionally,the effects of deformation field variables on microstructure development were determined through finite element modeling(FEM)of microparticle impacts.The ECCI,EBSD,and HR-TEM analyses revealed an interplay between dislocation-driven processes and twinning,leading to the development of four distinct deformation microstructures.Significant grain refinement occurs at the interface through continuous dynamic recrystallization(CDRX)due to high strain and temperature rise from adiabatic deformation,signs of softening,and ASI.Near the interface,a necklace-like structure of refined grains forms around grain boundaries,along with elongated grains,resulting from the coexistence of dynamic recovery and discontinuous dynamic recrystallization(DDRX)due to lower temperature rise and strain.Towards the particle or substrate interior,concurrent twinning and dislocation-mediated mechanisms refine the structure,forming straight,curved,and intersected twins.At the top of the particles,only deformed grains with a low dislocation density are observed.Our results showed that DRX induces microstructure softening in highly strained interface areas,facilitating atomic bonding in CoCrFeMnNi.HR-TEM investigation confirms the formation of atomic bonds between particles and substrate,with a gradual change in crystal lattice orientation from the particle to the substrate and the occurrence of some misfit dislocations and vacancies at the interface.Finally,the findings of this research suggest that softening and ASI,even in materials resistant to softening,are required to establish bonding in CS. 展开更多
关键词 Multi-length scale microstructure characteristics of bonding in cold spray DRX-induced softening and its role in bonding Interplay between twinning-induced hardening and DRX-driven softening EBSD&HR-TEM CoCrFeMnNi high entropy alloys
原文传递
On Bowen Entropy for Stable Sets in Positive Entropy Systems
20
作者 ZHANG Zhengwei YAN Kesong ZENG Fanping 《数学进展》 北大核心 2025年第1期99-112,共14页
In this paper,we study the Bowen entropy of stable sets in positive entropy G-system of amenable group actions.The lower bound of the Bowen entropy of these sets are estimated.
关键词 positive entropy stable set Bowen entropy amenable group action
原文传递
上一页 1 2 153 下一页 到第
使用帮助 返回顶部