A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
We report the numerical observation of discrete spatial solitons in a periodically poled lithium niobate waveguide array by applying an electrical field through electro-optical effect. We show that discrete spatial so...We report the numerical observation of discrete spatial solitons in a periodically poled lithium niobate waveguide array by applying an electrical field through electro-optical effect. We show that discrete spatial soliton can be controlled by applied voltage in the periodically poled lithium niobate.展开更多
The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytro...The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.展开更多
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro...Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.展开更多
Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based met...Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.展开更多
Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative patho...Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.展开更多
AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 group...AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs.展开更多
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc...Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.展开更多
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural a...In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.展开更多
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior...This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.展开更多
Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenv...Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies.展开更多
Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and l...Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.展开更多
Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopan...Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.展开更多
The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits s...The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
Transparent relaxor ferroelectric ceramics of the system lanthanum modified lead magnesium niobate have been investigated for a variety of electro-optic properties could make these materials alternatives to (Pb,La)(Zr...Transparent relaxor ferroelectric ceramics of the system lanthanum modified lead magnesium niobate have been investigated for a variety of electro-optic properties could make these materials alternatives to (Pb,La)(Zr,Ti)O3. However, a study that relates the properties in function stoichiometric formula, it has not been analyzed heretofore. Therefore, in this work the effect of A-site substitution of La+3 in the characterization microstructural, structural, optical and electro-optical on (1-x)[Pb(1-3/2y)Lay(Mg1/3Nb2/3)O3]-xPbTiO3 and (1-z)[(1-x)Pb(Mg1/3Nb2/3)O3+xPbTiO3]+zLa2O3 has been performed. It was observed that the properties according to the stoichiometric formula and the PT had a maximum whose behavior was related to the addition of lanthanum in each stoichiometries.展开更多
In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a ne...In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. Three methods were used for the surface modification of the sample: reference substrate (silicon wafer only submitted to a chemical cleaning), silicon wafer with surface roughness generated by plasma etching, silicon wafer with a thin iron film and silicon wafer with diamond nano powder used as precursor materials. For each kind of silicon wafer surface, the carbon nanotubes were deposited with two different deposition times (two and three hours). The carbon nanotubes structural characteristics were analyzed by Atomic Force Microscope and Scanning Electronic Microscope. The carbon nanotubes electrical characteristics were observed by Raman Spectroscopy and the carbon nanotubes electro-optical properties were analyzed by current vs voltage electrical measurements and photo-luminescence spectroscopy measurements. The photoelectric effect in the carbon nanotubes were determined by photo-induced current measurements. In this work, we obtained carbon nanotubes with semiconductor properties and carbon nanotubes with metallic properties. The electro-optical effects depend strongly on the substrate preparation and the deposition parameters of the carbon nanotubes. The carbon nanotubes are high aligned and show singular properties that can be used for many applications.展开更多
Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of thi...Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.展开更多
The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting i...The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting in image blurring and loss of tracking accuracy.In this paper,a Hexapod Vibration Isolation System(HVIS)is proposed and optimized to solve this problem.The optimization aims to centralize and minimize the natural frequencies of HVIS,for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band.Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform,a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design.The optimization result shows that the natural frequency bandwidth has been reduced by 42.9%,and the maximum natural frequency is reduced by 30.2%.The prototypes of initial and optimal designs are manufactured and tested.Both simulated and experimental results demonstrate the validity of the optimization,and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.展开更多
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金This work was supported by the National Natural Science Foundation of China (No. 60007001)the Foundation for Development of Science and Technology of Shanghai (No. OOJC14027)
文摘We report the numerical observation of discrete spatial solitons in a periodically poled lithium niobate waveguide array by applying an electrical field through electro-optical effect. We show that discrete spatial soliton can be controlled by applied voltage in the periodically poled lithium niobate.
基金the National Natural Science Foundation of China(No.52373311)the Innovation Program for Quantum Science and Technology(No.2021ZD0301605)+3 种基金provided by the National Natural Science Foundation of China(Nos.92263202 and 12374020)the National Key Research and Development Program of China(No.2020YFA0711502)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB33000000)support from the Australian Research Council(ARC Discovery Project,No.DP180102976).
文摘The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.
基金supported by the National Natural Science Foundation of China(No.62464010)Spring City Plan-Special Program for Young Talents(K202005007)+2 种基金Yunnan Talents Support Plan for Young Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Frontier Research Team of Kunming University 2023.
文摘Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(No.RS-2022-00143178)the Ministry of Education(MOE)(Nos.2022R1A6A3A13053896 and 2022R1F1A1074616),Republic of Korea.
文摘Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.
基金supported by the National Natural Science Foundation of China(No.32170121).
文摘Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.
基金Supported by the Zhejiang Medical Health Science and Technology Project(No.2021KY217)the Basic Public Welfare Research Project of Wenzhou Municipal Science and Technology Bureau(No.2024Y1221).
文摘AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs.
文摘Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金supported by the CAS Strategic Priority Research Program(No.XDB0760102),the Ministry of Science and Technology of China(No.2022YFF0802501)the Major Science and Technology Infrastructure Maintenance and Transformation Project of the Chinese Academy of Sciences,Shanghai Science and Technology Innovation Action Plan-Phospherus Project(No.23YF1426200)the National Key Research and Development Program of China(No.2024YFE0212200).
文摘In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.
文摘This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.
文摘Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies.
基金supported by the Yunnan Fundamental Research Projects(Grant Nos.202401AU070163 and 202501AT070298)the Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(Grant No.2023-XMDJ-00617107)+5 种基金the University Service Key Industry Project of Yunnan Province(Grant No.FWCY-ZD2024005)the Expert Workstation Support Project of Yunnan Province(Grant No.202405AF140069)the Scientific Research Foundation of Kunming University of Science and Technology(Grant No.20220122)the Analysis and Test Foundation of Kunming University of Science and Technology(Grant No.2023T20220122)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2025QN02057)the Ordos City Strategic Pioneering Science and Technology Special Program for New Energy(Grant No.DC2400003365).
文摘Lithium metal batteries(LMBs)have been regarded as one of the most promising alternatives in the post-lithium battery era due to their high energy density,which meets the needs of light-weight electronic devices and long-range electric vehicles.However,technical barriers such as dendrite growth and poor Li plating/stripping reversibility severely hinder the practical application of LMBs.However,lithium nitrate(LiNO_(3))is found to be able to stabilize the Li/electrolyte interface and has been used to address the above challenges.To date,considerable research efforts have been devoted toward understanding the roles of LiNO_(3) in regulating the surface properties of Li anodes and toward the development of many effective strategies.These research efforts are partially mentioned in some articles on LMBs and yet have not been reviewed systematically.To fill this gap,we discuss the recent advances in fundamental and technological research on LiNO_(3) and its derivatives for improving the performances of LMBs,particularly for Li-sulfur(S),Li-oxygen(O),and Li-Li-containing transition-metal oxide(LTMO)batteries,as well as LiNO_(3)-containing recipes for precursors in battery materials and interphase fabrication.This review pays attention to the effects of LiNO_(3) in lithium-based batteries,aiming to provide scientific guidance for the optimization of electrode/electrolyte interfaces and enrich the design of advanced LMBs.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).
文摘Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
基金Project supported by the Scientific Research Program of Hunan Provincial Education Department,China(Grant No.18C0232)the International Cooperative Extension Program of Changsha University of Science and Technology,China(Grant No.2019IC35)
文摘The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金CAPES,FAPESP and CNPq for the financial support.
文摘Transparent relaxor ferroelectric ceramics of the system lanthanum modified lead magnesium niobate have been investigated for a variety of electro-optic properties could make these materials alternatives to (Pb,La)(Zr,Ti)O3. However, a study that relates the properties in function stoichiometric formula, it has not been analyzed heretofore. Therefore, in this work the effect of A-site substitution of La+3 in the characterization microstructural, structural, optical and electro-optical on (1-x)[Pb(1-3/2y)Lay(Mg1/3Nb2/3)O3]-xPbTiO3 and (1-z)[(1-x)Pb(Mg1/3Nb2/3)O3+xPbTiO3]+zLa2O3 has been performed. It was observed that the properties according to the stoichiometric formula and the PT had a maximum whose behavior was related to the addition of lanthanum in each stoichiometries.
文摘In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. Three methods were used for the surface modification of the sample: reference substrate (silicon wafer only submitted to a chemical cleaning), silicon wafer with surface roughness generated by plasma etching, silicon wafer with a thin iron film and silicon wafer with diamond nano powder used as precursor materials. For each kind of silicon wafer surface, the carbon nanotubes were deposited with two different deposition times (two and three hours). The carbon nanotubes structural characteristics were analyzed by Atomic Force Microscope and Scanning Electronic Microscope. The carbon nanotubes electrical characteristics were observed by Raman Spectroscopy and the carbon nanotubes electro-optical properties were analyzed by current vs voltage electrical measurements and photo-luminescence spectroscopy measurements. The photoelectric effect in the carbon nanotubes were determined by photo-induced current measurements. In this work, we obtained carbon nanotubes with semiconductor properties and carbon nanotubes with metallic properties. The electro-optical effects depend strongly on the substrate preparation and the deposition parameters of the carbon nanotubes. The carbon nanotubes are high aligned and show singular properties that can be used for many applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378075,61377032,11604327,and 61475152)the Science Foundation of State Key Laboratory of Applied Optics,China
文摘Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.
基金supported by the National Key R&D Program of China(No.2021YFA1003503)。
文摘The electro-optical payloads on mobile platforms generally suffer undesirable vibrations generated by maneuvers and turbulence.These vibrations are in six degrees of freedom and cause line-of-sight jitters,resulting in image blurring and loss of tracking accuracy.In this paper,a Hexapod Vibration Isolation System(HVIS)is proposed and optimized to solve this problem.The optimization aims to centralize and minimize the natural frequencies of HVIS,for expanding the vibration isolation bandwidth and improving the vibration isolation in the higher frequency band.Considering that the design space for HVIS is limited and interfered with the frames of the mobile platform,a non-collision algorithm is proposed and applied in the optimization to obtain the feasible optimal design.The optimization result shows that the natural frequency bandwidth has been reduced by 42.9%,and the maximum natural frequency is reduced by 30.2%.The prototypes of initial and optimal designs are manufactured and tested.Both simulated and experimental results demonstrate the validity of the optimization,and the optimal design provides a maximum of 15 dB more isolation in rotation direction than the initial design.