摘要
The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.
基金
the National Natural Science Foundation of China(No.52373311)
the Innovation Program for Quantum Science and Technology(No.2021ZD0301605)
provided by the National Natural Science Foundation of China(Nos.92263202 and 12374020)
the National Key Research and Development Program of China(No.2020YFA0711502)
the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB33000000)
support from the Australian Research Council(ARC Discovery Project,No.DP180102976).