Sustainable and clean hydrogen development has been considered a mainstream trend in contemporary energy research.Heterogenous photo(electro)catalysis is a promising approach to producing hydrogen in an environmentall...Sustainable and clean hydrogen development has been considered a mainstream trend in contemporary energy research.Heterogenous photo(electro)catalysis is a promising approach to producing hydrogen in an environmentally friendly manner.Perovskites have emerged as an inexpensive,earth-abundant,and easily fabricated semiconductor material for photo(electro)catalysis.However,some of their shortcomings have limited the wide range of applications.In this mini-review,we present the fundamentals and applications of various perovskites for photo(electro)catalytic water splitting.In addition,we summarize advanced strategies for photo(electro)catalytic water splitting based on perovskites,focusing on the following approaches:intrinsic modulation of perovskites,functionalization of perovskites,and design of perovskite tandem systems.In summary,we point out the challenges and potential applications for perovskite solar water splitting and systematically describe various strategies to improve the photo(electro)catalysis performance of perovskites,illustrating the potential of using perovskites as key materials for solar water splitting.展开更多
In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed i...In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.展开更多
In the grand tapestry of the global energy transition,the quest for scalable hydrogen economies emerges as a pivotal thread,weaving together the dual imperatives of decarbonization and industrial pragmatism.Yet,in its...In the grand tapestry of the global energy transition,the quest for scalable hydrogen economies emerges as a pivotal thread,weaving together the dual imperatives of decarbonization and industrial pragmatism.Yet,in its present form,hydrogen production remains deeply entwined with carbon emissions.展开更多
Objective To observe the therapeutic effect of electro acupuncture at QIǖXǖ(丘墟GB40) for treating migraine and provide clinical study for Acupoints Dictionary of People's Republic of China. Methods Multi-center ...Objective To observe the therapeutic effect of electro acupuncture at QIǖXǖ(丘墟GB40) for treating migraine and provide clinical study for Acupoints Dictionary of People's Republic of China. Methods Multi-center (3 First-Class hospitals) study was adopted, and the involved 3 hospitals did clinical observation according to the requirements of the project. The methods are as follows. All cases were randomized into treatment group and control group according to their sequence. QIǖXǖ(丘墟GB40) was selected in treatment group, while Tiānshū (天枢 ST25) was selected in control group. Both groups were performed electro acupuncture, and syndromes indexes of migraine and 5-HT were observed before and after treatment. All data were analyzed by statistic software SPSS11.5. Results There was significant difference of VAS margin between two groups in each center and the combined center (u= -3. 362, P=0. 001 ). There was significant difference of therapeutic effect of 4-week treatment between two groups in each clinical center and the combined center. The therapeutic effect of 3-month treatment between two groups in No. 1 and No. 3 hospitals, showed significant difference, the treatment group was better; while that of No. 2 hospital had no obvious difference. The therapeutic effect of 6-month treatment between two groups in each center and the combined center had significant difference, the treatment group was better. Conclusion The therapy of electro acupuncture at QIǖXǖ(丘墟GB40) is effective for migraine.展开更多
This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coi...This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of d...The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.展开更多
Monolithic electro absorption modulated distributed feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0 5V to 3 0V),and ab...Monolithic electro absorption modulated distributed feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0 5V to 3 0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1 5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.展开更多
A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microsc...A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD).The Pd micro-nanoparticles were prepared on a COOH-CNTs/PI membrane as a comparative sample.The XRD and SEM investigations for Pd electrodeposition demonstrate that the particle size of Gr/PI composite membrane is smaller than that of COOH-CNTs/PI membrane,while the uniform and dense distribution of Pd micro-nanoparticles on the Gr/PI composite membrane is greater than that on the COOH-CNTs/PI membrane.The electrocatalytic properties of Pd/Gr/PI and Pd/COOH-CNTs/PI catalysts for the oxidation of formic acid were investigated by cyclic voltammetry(CV) and chronoamperometry(CA).It is found that the electrocatalytic activity and stability of Pd/Gr/PI are superior to those of Pd/COOH-CNTs/PI catalyst.This is because smaller metal particles and higher dense distribution desirably provide abundant catalytic sites and mean higher catalytic activity.Therefore,the Pd/Gr/PI catalyst has better catalytic performance for formic acid oxidation than the Pd/COOH-CNTs/PI catalyst.展开更多
The inexhaustible heat deposit in great depths (5-10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electrici...The inexhaustible heat deposit in great depths (5-10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electricity and heat. The economical exploration and exploitation of this superdeep geothermal heat deposit requires a novel drilling technique, because the currently only deep drilling method (Rotary) is limited to about 5 km, due to the rising costs, depending exponentially on depth. Electro-pulse-boring (EPB) is a valuable option to Rotary drilling. EPB, originally investigated in Russia, is ready to be developed for industrialization. The feasibility of EPB is proven by many boreholes drilled up to 200 m in granite (crystalline). Estimates show outstanding low costs for drilling by EPB: 100 E/m for a borehole with a large diameter (φ) such as 20 (50 cm), independent on depth and applicable likewise for sediments and crystalline rocks, such as granite. The current rate of penetration (ROP) of 3 m per hour is planned to be augmented up to 35 m per hour, and again, irrespective whether in sedimentary or crystalline formations. Consequently, a 10 km deep borehole with φ 50 cm will ultimately be drilled within 12 days. EPB will create new markets, such as: (i) EPB shallow drilling for geotechnics, energy piles, measures in order to mitigate natural hazards, etc., (ii) EPB deep drilling (3-5 km) for hydro-geothermics, exploration campaigns etc. and (iii) EPB super-deep drilling (5-10 km) for petro-geothermies, enabling the economic generation of electricity. The autonomous and unlimited supply with cost efficient electricity, besides ample heat, ensures reliably clean and renew- able energy, thus, high supply security. Such development will provide a substantial relief to cope with the global challenge to limit the climate change below 2 ℃. The diminution of fossil fuels, due to the energy transition in order to mitigate the climate change, implies likewise the decrease of air pollution.展开更多
Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabri...Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM.展开更多
A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed...A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic characteristics展开更多
In this work,we propose a new spin-coating method coupling with high thermal decomposition,to prepare the tin-antimony(Sn-Sb) oxide electrode.The character of the spin-coating electrode was compared with the dip-coa...In this work,we propose a new spin-coating method coupling with high thermal decomposition,to prepare the tin-antimony(Sn-Sb) oxide electrode.The character of the spin-coating electrode was compared with the dip-coating electrode through X-ray diffraction(XRD),scanning electron microscopy(SEM),accelerated life test,cyclic voltammetry,and electrolytic degradability. The results showed that the spin-coating electrode had a better defined crystal form,a smoother and more compact surface than that of the dip-coating electrode.Service time of the spin-coating electrode was determined to be longer than 15 h,and it was less than 2 min for the dip-coating electrode.Electrochemical characterization analysis showed that the electrolytic degradability of the spin-coating electrode is better than that of the dip-coating electrode.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
基金supported by the National Natural Science Foundation of China (No.62204067)Young Talent Support Project of Guangzhou Association for Science and Technology (No.QT-2023-051)+2 种基金industry support from Shenzhen Jinjia jituan Co.,Ltd with funding No.R00043the financial support from the Science and Technology Development Fund,Macao SAR (File no.FDCT-0125/2022/A and FDCT-0006/2023/RIB1)the National Natural Science Foundation of China (No.22305009)
文摘Sustainable and clean hydrogen development has been considered a mainstream trend in contemporary energy research.Heterogenous photo(electro)catalysis is a promising approach to producing hydrogen in an environmentally friendly manner.Perovskites have emerged as an inexpensive,earth-abundant,and easily fabricated semiconductor material for photo(electro)catalysis.However,some of their shortcomings have limited the wide range of applications.In this mini-review,we present the fundamentals and applications of various perovskites for photo(electro)catalytic water splitting.In addition,we summarize advanced strategies for photo(electro)catalytic water splitting based on perovskites,focusing on the following approaches:intrinsic modulation of perovskites,functionalization of perovskites,and design of perovskite tandem systems.In summary,we point out the challenges and potential applications for perovskite solar water splitting and systematically describe various strategies to improve the photo(electro)catalysis performance of perovskites,illustrating the potential of using perovskites as key materials for solar water splitting.
基金Research Committee,National Technical University of Athens。
文摘In this study,the design and development of a sensor made of low-cost parts to monitor inclination and acceleration are presented.Αmicro electro-mechanical systems,micro electro mechanical systems,sensor was housed in a robust enclosure and interfaced with a Raspberry Pi microcomputer with Internet connectivity into a proposed tilt and acceleration monitoring node.Online capabilities accessible by mobile phone such as real-time graph,early warning notification,and database logging were implemented using Python programming.The sensor response was calibrated for inherent bias and errors,and then tested thoroughly in the laboratory under static and dynamic loading conditions beside high-quality transducers.Satisfactory accuracy was achieved in real time using the Complementary Filter method,and it was further improved in LabVIEW using Kalman Filters with parameter tuning.A sensor interface with LabVIEW and a 600 MHz CPU microcontroller allowed real-time implementation of highspeed embedded filters,further optimizing sensor results.Kalman and embedded filtering results show agreement for the sensor,followed closely by the lowcomplexity complementary filter applied in real time.The sensor's dynamic response was also verified by shaking table tests,simulating past recorded seismic excitations or artificial vibrations,indicating negligible effect of external acceleration on measured tilt;sensor measurements were benchmarked using highquality tilt and acceleration measuring transducers.A preliminary field evaluation shows robustness of the sensor to harsh weather conditions.
基金financially supported by the National Natural Science Foundation of China(22225902)the National Key Research&Development Program of China(2022YFE0115900)。
文摘In the grand tapestry of the global energy transition,the quest for scalable hydrogen economies emerges as a pivotal thread,weaving together the dual imperatives of decarbonization and industrial pragmatism.Yet,in its present form,hydrogen production remains deeply entwined with carbon emissions.
文摘Objective To observe the therapeutic effect of electro acupuncture at QIǖXǖ(丘墟GB40) for treating migraine and provide clinical study for Acupoints Dictionary of People's Republic of China. Methods Multi-center (3 First-Class hospitals) study was adopted, and the involved 3 hospitals did clinical observation according to the requirements of the project. The methods are as follows. All cases were randomized into treatment group and control group according to their sequence. QIǖXǖ(丘墟GB40) was selected in treatment group, while Tiānshū (天枢 ST25) was selected in control group. Both groups were performed electro acupuncture, and syndromes indexes of migraine and 5-HT were observed before and after treatment. All data were analyzed by statistic software SPSS11.5. Results There was significant difference of VAS margin between two groups in each center and the combined center (u= -3. 362, P=0. 001 ). There was significant difference of therapeutic effect of 4-week treatment between two groups in each clinical center and the combined center. The therapeutic effect of 3-month treatment between two groups in No. 1 and No. 3 hospitals, showed significant difference, the treatment group was better; while that of No. 2 hospital had no obvious difference. The therapeutic effect of 6-month treatment between two groups in each center and the combined center had significant difference, the treatment group was better. Conclusion The therapy of electro acupuncture at QIǖXǖ(丘墟GB40) is effective for migraine.
基金National Natural Science Foundation of China (50275114)
文摘This paper investigates vibration control of beam through electro-magnetic constrained layer damping (EMCLD) which consists of electromagnet layer, permanent magnet layer and viscoelastic damping layer. When the coil of the electromagnet is electrified with proper control strategy, the electromagnet can exert magnetic force opposite to the direction of structural deformation so that the structural vibration is attenuated. A mathematical model is developed based on the equivalent current method to calculate the electromagnetic control force produced by EMCLD. The governing equations of the system are obtained using Hamilton's Principle and then reduced with the assumed-mode method. A simulation on vibration control of a cantilever beam is conducted under the velocity proportional feedback to demonstrate the energy dissipation capability of EMCLD, and the beam system with the same parameter is experimented. The results of experiment and simulation are compared and the results show that the EMCLD is an effective means for suppressing modal vibration. The results also indicate that the beam system has better control performance for larger control current. The EMCLD method presented in this paper provides an applicable and efficient tool for the vibration control of structures.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
文摘The 3-dimensional couple equations of magneto-electro-elastic structures are derived under Hamiltonian system based on the Hamilton principle. The problem of single sort of variables is converted into the problem of double sorts of variables, and the Hamilton canonical equations are established. The 3-dimensional problem of magneto-electro-elastic structure which is investigated in Euclidean space commonly is converted into symplectic system. At the same time the Lagrange system is converted into Hamiltonian system. As an example, the dynamic characteristics of the simply supported functionally graded magneto-electro-elastic material (FGMM) plate and pipe are investigated. Finally, the problem is solved by symplectic algorithm. The results show that the physical quantities of displacement, electric potential and magnetic potential etc. change continuously at the interfaces between layers under the transverse pressure while some other physical quantities such as the stress, electric and magnetic displacement are not continuous. The dynamic stiffness is increased by the piezoelectric effect while decreased by the piezomagnetic effect.
文摘Monolithic electro absorption modulated distributed feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0 5V to 3 0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1 5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.
基金Project(51372106)supported by the National Natural Science Foundation of China
文摘A novel Pd electrocatalyst with flowerlike micro-nanostructures was synthesized by electrochemical deposition on a flexible graphene/polyimide(Gr/PI) composite membrane and characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD).The Pd micro-nanoparticles were prepared on a COOH-CNTs/PI membrane as a comparative sample.The XRD and SEM investigations for Pd electrodeposition demonstrate that the particle size of Gr/PI composite membrane is smaller than that of COOH-CNTs/PI membrane,while the uniform and dense distribution of Pd micro-nanoparticles on the Gr/PI composite membrane is greater than that on the COOH-CNTs/PI membrane.The electrocatalytic properties of Pd/Gr/PI and Pd/COOH-CNTs/PI catalysts for the oxidation of formic acid were investigated by cyclic voltammetry(CV) and chronoamperometry(CA).It is found that the electrocatalytic activity and stability of Pd/Gr/PI are superior to those of Pd/COOH-CNTs/PI catalyst.This is because smaller metal particles and higher dense distribution desirably provide abundant catalytic sites and mean higher catalytic activity.Therefore,the Pd/Gr/PI catalyst has better catalytic performance for formic acid oxidation than the Pd/COOH-CNTs/PI catalyst.
文摘The inexhaustible heat deposit in great depths (5-10 km) is a scientific fact. Such deposit occurs around the globe. Thereby, everybody is enabled to generate autonomously clean and renewable energy, ample electricity and heat. The economical exploration and exploitation of this superdeep geothermal heat deposit requires a novel drilling technique, because the currently only deep drilling method (Rotary) is limited to about 5 km, due to the rising costs, depending exponentially on depth. Electro-pulse-boring (EPB) is a valuable option to Rotary drilling. EPB, originally investigated in Russia, is ready to be developed for industrialization. The feasibility of EPB is proven by many boreholes drilled up to 200 m in granite (crystalline). Estimates show outstanding low costs for drilling by EPB: 100 E/m for a borehole with a large diameter (φ) such as 20 (50 cm), independent on depth and applicable likewise for sediments and crystalline rocks, such as granite. The current rate of penetration (ROP) of 3 m per hour is planned to be augmented up to 35 m per hour, and again, irrespective whether in sedimentary or crystalline formations. Consequently, a 10 km deep borehole with φ 50 cm will ultimately be drilled within 12 days. EPB will create new markets, such as: (i) EPB shallow drilling for geotechnics, energy piles, measures in order to mitigate natural hazards, etc., (ii) EPB deep drilling (3-5 km) for hydro-geothermics, exploration campaigns etc. and (iii) EPB super-deep drilling (5-10 km) for petro-geothermies, enabling the economic generation of electricity. The autonomous and unlimited supply with cost efficient electricity, besides ample heat, ensures reliably clean and renew- able energy, thus, high supply security. Such development will provide a substantial relief to cope with the global challenge to limit the climate change below 2 ℃. The diminution of fossil fuels, due to the energy transition in order to mitigate the climate change, implies likewise the decrease of air pollution.
基金financial support from the National Natural Science Foundation of China (No. 51005120)Jiangsu Natural Science Foundation (Nos. BK2010508 and BE2010193)
文摘Titanium and its alloys have found very wide application in aerospace due to their excellent characteristics although their processing is still a challenge. Electrochemical machining is an important issue in the fabrication of titanium and titanium alloys. Wire electrochemical machining (WECM) is mainly used for workpiece cutting under the condition of different thickness plates. It has a great advantage over wire electro-discharge machining, which is the absence of heat-affected zone around the cutting area. Moreover, the wire electrode in WECM could be used repetitively because it is not worn out. Thus, much attention has been paid to WECM. The effective way of removing electrolysis products is of importance to WECM. In this paper, the axial electrolyte flushing is presented to WECM for removing electrolysis products and renewing electrolyte. The Taguchi experiment is conducted to optimize the machining parameters, such as wire feedrate, machining voltage, electrolyte concentration, etc. Experimental results show that WECM with axial electrolyte flushing is a promising issue in the fabrication of titanium alloy (TC1). The feasibility of multi-wire electrochemical machining is also demonstrated to improve the machining productivity of WECM.
文摘A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic characteristics
基金the financial support from the Program for New Century Excellent Talents in University(NoNCET-07-0683)President Research Fund of Xi'an Jiaotong University(No08140016)
文摘In this work,we propose a new spin-coating method coupling with high thermal decomposition,to prepare the tin-antimony(Sn-Sb) oxide electrode.The character of the spin-coating electrode was compared with the dip-coating electrode through X-ray diffraction(XRD),scanning electron microscopy(SEM),accelerated life test,cyclic voltammetry,and electrolytic degradability. The results showed that the spin-coating electrode had a better defined crystal form,a smoother and more compact surface than that of the dip-coating electrode.Service time of the spin-coating electrode was determined to be longer than 15 h,and it was less than 2 min for the dip-coating electrode.Electrochemical characterization analysis showed that the electrolytic degradability of the spin-coating electrode is better than that of the dip-coating electrode.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.