In this paper, a mathematical model for topology optimization oftruss structures with constraints of displacement and systemreliability under multiple loading cases is constructed. In order toavoid the difficulty of c...In this paper, a mathematical model for topology optimization oftruss structures with constraints of displacement and systemreliability under multiple loading cases is constructed. In order toavoid the difficulty of computing the structure's system reliability,a solving approach is presented in which the failure probability ofsystem is divided into the sum of a all bars' failures probability bymeans of reliability distribution. In addition, by drawing into thereliability safety factor and the fundamen- tal relationship instructural mechanics, all probability constraints of displacement andstress are equiv- alently displayed as conventional form and linearfunction of the design variables.展开更多
A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds...A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.展开更多
A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases(MLCs)is presented.A spatial truss-like material model with three families of orthotropic members is ado...A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases(MLCs)is presented.A spatial truss-like material model with three families of orthotropic members is adopted,in which the three families of members along three orthotropic directions are embedded continuously in a weak matrix.The densities and directions of the three families of members at the nodes are taken as the design variables.An optimality criterion is suggested based on the concept of directional stiffness.First,under each single-load case(SLC),the truss-like structure is optimized as per the fully stressed criterion.Accordingly,the directional stiffness of the optimal structure under an SLC at every node is obtained.Next,the directional stiffness of the truss-like structure under MLCs is determined by ensuring that the directional stiffness is as similar as possible to the maximum directional stiffness of the optimal structure under every SLC along all directions.Finally,the directions and densities of the members in the optimal truss-like structures under MLCs are obtained by solving the eigenvalue problems of the coefficient matrix of the directional stiffness at every node.Two examples are presented to demonstrate the effectiveness and efficiency of the method.展开更多
This paper is to address structural optimization problems where multiple structure cases or multiple payload cases can be considered simultaneously. Both types of optimization problems involve multiple finite element ...This paper is to address structural optimization problems where multiple structure cases or multiple payload cases can be considered simultaneously. Both types of optimization problems involve multiple finite element models at each iteration step, which draws high demands in opti- mization methods. Considering the common characteristic for these two types of problems, which is that the design domain keeps the same no matter what the structure cases or payload cases are, both problems can be formulated into the unified expressions. A two-level multipoint approxima- tion (TMA) method is firstly improved with the use of analytical sensitivity analysis for structural mass, and then this improved method is utilized to tackle these two types of problems. Based on the commercial finite element software MSC.Patran/Nastran, an optimization system for multiple structure cases and multiple payload cases is developed. Numerical examples are conducted to verify its feasibility and efficiency, and the necessity for the simultaneous optimizations of multiple structure cases and multiple payload cases are illustrated as well.展开更多
The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the e...The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the entire OWT.Ideally,optimal performance can be realized by effectively coordinating two components,notwithstanding their separate design processes.In pursuit of this objective,this paper proposes a concurrent design methodology for the jacket structure and transition piece by exploiting topology optimization(TO).The TO for a three-legged jacket foundation is formulated by minimizing static compliance.In contrast to conventional TO,two separated volume fractions are imposed upon the structural design domain of the jacket structure and transition piece to ensure continuity.A 5 MW(megawatt)OWT supported by a four-legged or three-legged jacket substructure is under investigation.The external loads are derived from various design load cases that are acquired using the commercial software platform DNV Bladed(Det Norske Veritas).Through a comparative analysis of the fundamental frequency and maximum nodal deformation,it was found that the optimized solution demonstrates a reduced weight and superior stiffness.The findings demonstrate the present concurrent design approach using TO can yield significant benefits by reducing the overall design cycle and enhancing the feasibility of the final design.展开更多
In this paper we discuss the topological structure near the singular point O (0,0) of the plane cubic system in the undetermined sign case, and give their coefficient conditions.
Aiming to improve the Structured Query Language( SQL) injection penetration test accuracy through the formalismguided test case generation,an attack purpose based attack tree model of SQL injection is proposed,and the...Aiming to improve the Structured Query Language( SQL) injection penetration test accuracy through the formalismguided test case generation,an attack purpose based attack tree model of SQL injection is proposed,and then under the guidance of this model, the formal descriptions for the SQL injection vulnerability feature and SQL injection attack inputs are established. Moreover,according to new coverage criteria,these models are instantiated and the executable test cases are generated.Experiments show that compared with the random enumerated test case used in other works,the test case generated by our method can detect the SQL injection vulnerability more effectively. Therefore,the false negative is reduced and the test accuracy is improved.展开更多
The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and f...The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress intensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.展开更多
Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Sei...Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.展开更多
This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum...This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.展开更多
COREX shaft furnace(SF)is a typical screw feeder with a storage container coupled with eight screw casings and screws.The structure of screw casing plays an important role in the moving behavior of burdens,stress di...COREX shaft furnace(SF)is a typical screw feeder with a storage container coupled with eight screw casings and screws.The structure of screw casing plays an important role in the moving behavior of burdens,stress distribution,abrasive wear of screws,and energy consumption during the operation of SF.Therefore,a three-dimensional semi-cylindrical model of actual size of COREX-3000 SF was established based on discrete element method to investigate the influences of screw casing structure.The results show that the increase in the gap between the outside of screw flight and screw casing is beneficial for the smooth operation of SF,resulting in uniform descending velocity along the radius of SF in the lower part,decreasing the size of recirculation region,and alleviating stress concentration in the screw casing.Moreover,raising the gap appropriately is also beneficial to weaken screw abrasive wear,decrease energy consumption,and then prolong the service life of the screws.However,enlarging the gap also leads to more undesired high temperature reduction gas into the SF from melter gasifier,thereby deteriorating the operation of SF.Thus,an ideal distance exists between the outside of the screw flight and the screw casing,which is suggested to be equal to the average of particle diameter.展开更多
In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarc...In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures.展开更多
Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blo...Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blocky electrodes for electrochemical machining(ECM)of casing parts is a commonly adopted method,especially when highly convex structures.However,with an increase in the convex structure height,the fow felds of the machining areas become more complex,and short circuits may occur at any time.In this study,a method to improve the fow feld characteristics within a machining area by adjusting the backwater pressure is proposed and validated through simulation and experiment analyses.The simulation results demonstrated that the back-pressure method can signifcantly improve the uniformity of the fow feld around the convex structure compared with the extraction and open outlet modes.Subsequently,the back-pressure value was optimized at 0.5 MPa according to the simulation results.The experimental results showed that using the optimized back-pressure parameters,the cathode feed-rate increased from 0.6 to 0.7 mm/min,and a 16.1 mm tall convex structure was successfully machined.This indicates that the back-pressure method is suitable and efective for electrochemical machining of highly convex structures with blocky electrodes.In this study,we propose a method to improve the electrochemical machining stability of a convex structure on a casing surface using backwater pressure,which has achieved remarkable results.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
This research presents an experimental and analytical study of the structural state of the 60/40 brass cartridge case, (BCC) after being fired. The oral section of the BCC has the function of confining the gases of fi...This research presents an experimental and analytical study of the structural state of the 60/40 brass cartridge case, (BCC) after being fired. The oral section of the BCC has the function of confining the gases of firing by expanding against the chamber and sealing the gases. Firing conditions, namely, high pressure and temperature, 3000 bar and 2727°C, respectively, affect performance properties of the (BCC). These are confining and crack strengths. Experimental study was done on the oral section to address these effects on the structural and mechanical properties of this brass. This alloy is a 60% copper (Cu) and 40% zinc (Zn) alloy and has a two-phase structure, alpha, (α) and beta, (β). Using “before and after” comparison approach;performance properties were tested in cartridge cases prepared before and after firing. These properties are hardness, tensile strength, micro-structural and chemical composition. Comparing the tests’ results, after firing demonstrated considerable degrading in performance properties, micro-structural disorder and a remarkable deficiency in the zinc element in the brass structure. This deficiency affects the percentage of beta phase in the alloy which governs the strength of the brass. According to the required properties before firing, it was found that after firing, the brass cartridge case is not qualified for reloading.展开更多
During the 100%front impact,all the parts of front car will participate in the course;the crash stiffness of bodywork will also reach the peak.During the crash,rational structure of bodywork can resist the distortion,...During the 100%front impact,all the parts of front car will participate in the course;the crash stiffness of bodywork will also reach the peak.During the crash,rational structure of bodywork can resist the distortion,absorb more energy and get better mode of distortion and low deceleration rate,so as to meet the performance of crash safety.The paper mainly makes optimization analysis based on the problems of front side rails,subframe,firewall,and optimization cases are confirmed which can decrease the intrusion and deceleration rate of the whole car.The structure of bodywork after optimization can meet the performance of crash safety.展开更多
To capitalize on the primary role of major course teaching and to facilitate students’understanding of abstract concepts in the data structure course,it is essential to increase their interest in learning and develop...To capitalize on the primary role of major course teaching and to facilitate students’understanding of abstract concepts in the data structure course,it is essential to increase their interest in learning and develop case studies that highlight fine traditional culture.By incorporating these culture-rich case studies into classroom instruction,we employ a project-driven teaching approach.This not only allows students to master professional knowledge,but also enhances their abilities to solve specific engineering problems,ultimately fostering cultural confidence.Over the past few years,during which educational reforms have been conducted for trial runs,the feasibility and effectiveness of these reform schemes have been demonstrated.展开更多
The objective of this paper is to highlight the importance of taking engineering geological characteristics and structures into account in land use planning.There have been a number of studies worldwide dealing with t...The objective of this paper is to highlight the importance of taking engineering geological characteristics and structures into account in land use planning.There have been a number of studies worldwide dealing with this issue.However more extensive implementation into land use planning practice still remains a task for the future in many places.A case study analyzing the geological environment in relation to the sites assigned for future development according to an existing land use plan was conducted in the Doubrava Region(north-east of the Czech Republic).Here,the geological conditions have been mostly influenced by anthropogenic processes connected with black coal mining.The engineering-geological zones,the pre-Quaternary basement and rock workability classes in the localities where future development is proposed on land use plans were evaluated using overlay analysis in a Geographic Information System(GIS).Landscape factors were also taken into account.Significant variability was identified in the investigated geological factors that have a bearing on safe cost effective development.Use of the results in future land use planning would have considerable financial benefits in implementation of future built development and these important conditions should be used by architects and designers,builders,land use planners,developers and scientists.展开更多
基金the National Natural Science Foundation of China
文摘In this paper, a mathematical model for topology optimization oftruss structures with constraints of displacement and systemreliability under multiple loading cases is constructed. In order toavoid the difficulty of computing the structure's system reliability,a solving approach is presented in which the failure probability ofsystem is divided into the sum of a all bars' failures probability bymeans of reliability distribution. In addition, by drawing into thereliability safety factor and the fundamen- tal relationship instructural mechanics, all probability constraints of displacement andstress are equiv- alently displayed as conventional form and linearfunction of the design variables.
基金Sponsored by Young Fund Programs of Explosives&Propellants ( HYZ08010202-4)
文摘A fractal pore structure model of combustible cartridge cases was established by virtue of the fractal geometry. Pore structure information, such as backbone fractal dimension and pore fractal dimension, of four kinds of combustible cartridge case were obtained by mercury intrusion porosimetry (MIP) . The formation mechanism of fractal pore structure of combustible cartridge was studied. The results show that the backbone fractal dimension consists of the component and influenced by the component number and size of components; the pore percolation fractal dimension reflects the pore structures of components; and the fractal dimension of pore structure is positively relative to the tensile strength of combustible cartridge case.
基金The research reported in this paper was financially supported by the Natural Science Foundation of China(No.11572131)the Subsidized Project for Postgraduates’Innovative Fund in Scientific Research of Huaqiao University(No.17011086002).
文摘A new method for topology optimization of truss-like structures with stress constraints under multiple-load cases(MLCs)is presented.A spatial truss-like material model with three families of orthotropic members is adopted,in which the three families of members along three orthotropic directions are embedded continuously in a weak matrix.The densities and directions of the three families of members at the nodes are taken as the design variables.An optimality criterion is suggested based on the concept of directional stiffness.First,under each single-load case(SLC),the truss-like structure is optimized as per the fully stressed criterion.Accordingly,the directional stiffness of the optimal structure under an SLC at every node is obtained.Next,the directional stiffness of the truss-like structure under MLCs is determined by ensuring that the directional stiffness is as similar as possible to the maximum directional stiffness of the optimal structure under every SLC along all directions.Finally,the directions and densities of the members in the optimal truss-like structures under MLCs are obtained by solving the eigenvalue problems of the coefficient matrix of the directional stiffness at every node.Two examples are presented to demonstrate the effectiveness and efficiency of the method.
基金supported by the Innovation Foundation of Beihang University for Ph.D.Graduates
文摘This paper is to address structural optimization problems where multiple structure cases or multiple payload cases can be considered simultaneously. Both types of optimization problems involve multiple finite element models at each iteration step, which draws high demands in opti- mization methods. Considering the common characteristic for these two types of problems, which is that the design domain keeps the same no matter what the structure cases or payload cases are, both problems can be formulated into the unified expressions. A two-level multipoint approxima- tion (TMA) method is firstly improved with the use of analytical sensitivity analysis for structural mass, and then this improved method is utilized to tackle these two types of problems. Based on the commercial finite element software MSC.Patran/Nastran, an optimization system for multiple structure cases and multiple payload cases is developed. Numerical examples are conducted to verify its feasibility and efficiency, and the necessity for the simultaneous optimizations of multiple structure cases and multiple payload cases are illustrated as well.
基金supports were received from the National Key Research and Development Program of China(2024YFE0208600)New Energy Joint Laboratory of China Southern Power Grid Corporation(GDXNY2024KF03)+2 种基金the National Natural Science Foundation of China(Grant No.U24B2090)National Key R&D Program(No.2022YFB4201300)Science and Technology Project of Huaneng Group(HNKJ24-H78).
文摘The jacket structure and transition piece comprise the supporting structure of a bottom-fixed offshore wind turbine(OWT)connected to the steel tower,which determines the overall structural dynamic performance of the entire OWT.Ideally,optimal performance can be realized by effectively coordinating two components,notwithstanding their separate design processes.In pursuit of this objective,this paper proposes a concurrent design methodology for the jacket structure and transition piece by exploiting topology optimization(TO).The TO for a three-legged jacket foundation is formulated by minimizing static compliance.In contrast to conventional TO,two separated volume fractions are imposed upon the structural design domain of the jacket structure and transition piece to ensure continuity.A 5 MW(megawatt)OWT supported by a four-legged or three-legged jacket substructure is under investigation.The external loads are derived from various design load cases that are acquired using the commercial software platform DNV Bladed(Det Norske Veritas).Through a comparative analysis of the fundamental frequency and maximum nodal deformation,it was found that the optimized solution demonstrates a reduced weight and superior stiffness.The findings demonstrate the present concurrent design approach using TO can yield significant benefits by reducing the overall design cycle and enhancing the feasibility of the final design.
文摘In this paper we discuss the topological structure near the singular point O (0,0) of the plane cubic system in the undetermined sign case, and give their coefficient conditions.
基金National Natural Science Foundation of China(No.51274150)Tianjin Major Project of Application Foundation and Advanced Technology,China(No.12JCZDJC27800)
文摘Aiming to improve the Structured Query Language( SQL) injection penetration test accuracy through the formalismguided test case generation,an attack purpose based attack tree model of SQL injection is proposed,and then under the guidance of this model, the formal descriptions for the SQL injection vulnerability feature and SQL injection attack inputs are established. Moreover,according to new coverage criteria,these models are instantiated and the executable test cases are generated.Experiments show that compared with the random enumerated test case used in other works,the test case generated by our method can detect the SQL injection vulnerability more effectively. Therefore,the false negative is reduced and the test accuracy is improved.
文摘The Toroidal Field (TF) coil case of the HT-7U superconducting tokamak device is made of austenitic stainless steel 316LN and is designed to operate at cryogenic temperature (4 K). 316LN can retain high strength and fracture toughness at 4 K. Feasibility study on technical process of welding has been experimentally considered as a hopeful joint method for suppression of post-welding deformation and reduction of over-heating. Meanwhile the final range of stress intensity and the stress intensity factor (K) for pre-cracks of welding structure have been determined by using J-integral. These related results are optimistic and have shown that there's no problem in strength and fracture toughness at the vicinity of the pre-crack tip. This paper introduces the welding structure of TF coil case in detail.
文摘Anti-Seismic Design of Building Structures is an important course in civil engineering majors,and it is also a course that pays equal attention to theory and practice.Therefore,by establishing a case base for Anti-Seismic Design of Building Structures,the obscure theoretical knowledge can be taught to students in the form of examples,and the knowledge becomes intuitive.In this way,the students’understanding of anti-seismic design theory and the efficiency of teaching can be improved,and the students’interest in learning can be stimulated.
基金financially supported by the research special fund of public service sector from the Ministry of Land and Resources (No. 201111008)
文摘This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.
基金supported by the National Key Technology Research and Development Program of China (Grant No.2011BAE04B02)National Natural Science Foundation of China(Grant No.51174053)
文摘COREX shaft furnace(SF)is a typical screw feeder with a storage container coupled with eight screw casings and screws.The structure of screw casing plays an important role in the moving behavior of burdens,stress distribution,abrasive wear of screws,and energy consumption during the operation of SF.Therefore,a three-dimensional semi-cylindrical model of actual size of COREX-3000 SF was established based on discrete element method to investigate the influences of screw casing structure.The results show that the increase in the gap between the outside of screw flight and screw casing is beneficial for the smooth operation of SF,resulting in uniform descending velocity along the radius of SF in the lower part,decreasing the size of recirculation region,and alleviating stress concentration in the screw casing.Moreover,raising the gap appropriately is also beneficial to weaken screw abrasive wear,decrease energy consumption,and then prolong the service life of the screws.However,enlarging the gap also leads to more undesired high temperature reduction gas into the SF from melter gasifier,thereby deteriorating the operation of SF.Thus,an ideal distance exists between the outside of the screw flight and the screw casing,which is suggested to be equal to the average of particle diameter.
基金co-supported by National Natural Science Foundation of China(No.51975124)Shanghai International Cooperation Project of One Belt and One Road of China(No.20110741700)Major Research Special Project of Aeroengine and Gas Turbine of China(No.J2019-IV-0016)。
文摘In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures.
基金Supported by National Natural Science Foundation of China(Grant No.51775484)China Postdoctoral Science Foundation(Grant No.2020M670791).
文摘Casing parts are regarded as key components of aero-engines.Most casing parts are attached to convex structures of diferent shapes,whose heights range from hundreds of microns to tens of millimeters.Using profling blocky electrodes for electrochemical machining(ECM)of casing parts is a commonly adopted method,especially when highly convex structures.However,with an increase in the convex structure height,the fow felds of the machining areas become more complex,and short circuits may occur at any time.In this study,a method to improve the fow feld characteristics within a machining area by adjusting the backwater pressure is proposed and validated through simulation and experiment analyses.The simulation results demonstrated that the back-pressure method can signifcantly improve the uniformity of the fow feld around the convex structure compared with the extraction and open outlet modes.Subsequently,the back-pressure value was optimized at 0.5 MPa according to the simulation results.The experimental results showed that using the optimized back-pressure parameters,the cathode feed-rate increased from 0.6 to 0.7 mm/min,and a 16.1 mm tall convex structure was successfully machined.This indicates that the back-pressure method is suitable and efective for electrochemical machining of highly convex structures with blocky electrodes.In this study,we propose a method to improve the electrochemical machining stability of a convex structure on a casing surface using backwater pressure,which has achieved remarkable results.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
文摘This research presents an experimental and analytical study of the structural state of the 60/40 brass cartridge case, (BCC) after being fired. The oral section of the BCC has the function of confining the gases of firing by expanding against the chamber and sealing the gases. Firing conditions, namely, high pressure and temperature, 3000 bar and 2727°C, respectively, affect performance properties of the (BCC). These are confining and crack strengths. Experimental study was done on the oral section to address these effects on the structural and mechanical properties of this brass. This alloy is a 60% copper (Cu) and 40% zinc (Zn) alloy and has a two-phase structure, alpha, (α) and beta, (β). Using “before and after” comparison approach;performance properties were tested in cartridge cases prepared before and after firing. These properties are hardness, tensile strength, micro-structural and chemical composition. Comparing the tests’ results, after firing demonstrated considerable degrading in performance properties, micro-structural disorder and a remarkable deficiency in the zinc element in the brass structure. This deficiency affects the percentage of beta phase in the alloy which governs the strength of the brass. According to the required properties before firing, it was found that after firing, the brass cartridge case is not qualified for reloading.
基金"Twelfth Five-year Plan"for Sci & Tech Research of China(No.2011BAG03B02No.2011BAG03B06)
文摘During the 100%front impact,all the parts of front car will participate in the course;the crash stiffness of bodywork will also reach the peak.During the crash,rational structure of bodywork can resist the distortion,absorb more energy and get better mode of distortion and low deceleration rate,so as to meet the performance of crash safety.The paper mainly makes optimization analysis based on the problems of front side rails,subframe,firewall,and optimization cases are confirmed which can decrease the intrusion and deceleration rate of the whole car.The structure of bodywork after optimization can meet the performance of crash safety.
基金the research outcomes of a blended top-tier undergraduate course in Henan ProvinceData Structures and Algorithms(Jiao Gao[2022]324)a research-based teaching demonstration course in Henan Province-Data Structures and Algorithms(Jiao Gao[2023]36)a model course of ideological and political education of Anyang Normal University-Data Structures and Algorithms(No.YBKC20210012)。
文摘To capitalize on the primary role of major course teaching and to facilitate students’understanding of abstract concepts in the data structure course,it is essential to increase their interest in learning and develop case studies that highlight fine traditional culture.By incorporating these culture-rich case studies into classroom instruction,we employ a project-driven teaching approach.This not only allows students to master professional knowledge,but also enhances their abilities to solve specific engineering problems,ultimately fostering cultural confidence.Over the past few years,during which educational reforms have been conducted for trial runs,the feasibility and effectiveness of these reform schemes have been demonstrated.
基金support of this project(GAÈR-105/09/1631)which forms the basis of this article.
文摘The objective of this paper is to highlight the importance of taking engineering geological characteristics and structures into account in land use planning.There have been a number of studies worldwide dealing with this issue.However more extensive implementation into land use planning practice still remains a task for the future in many places.A case study analyzing the geological environment in relation to the sites assigned for future development according to an existing land use plan was conducted in the Doubrava Region(north-east of the Czech Republic).Here,the geological conditions have been mostly influenced by anthropogenic processes connected with black coal mining.The engineering-geological zones,the pre-Quaternary basement and rock workability classes in the localities where future development is proposed on land use plans were evaluated using overlay analysis in a Geographic Information System(GIS).Landscape factors were also taken into account.Significant variability was identified in the investigated geological factors that have a bearing on safe cost effective development.Use of the results in future land use planning would have considerable financial benefits in implementation of future built development and these important conditions should be used by architects and designers,builders,land use planners,developers and scientists.