We propose the following conjecture on(σ)n the sum-of-divisors function:log(e'nlog logn-σ(n))/log(e'nlog log n)will increase strictly and converge to1 when n runs from the colossally abundant numbers to infi...We propose the following conjecture on(σ)n the sum-of-divisors function:log(e'nlog logn-σ(n))/log(e'nlog log n)will increase strictly and converge to1 when n runs from the colossally abundant numbers to infinity This conjecture is a sufficient condition for the and converge to1 when n nuns from the colossally abundant numbers to infinity.This conjecture is a sufficient condition for the Ricemann hypothesis by Robin's theorem,and it is confirmed for n from10^(4 )up to 10^(103078) Further,we present two additional Riemann hypothesis by Robin's theorem,and it is confirmed forn from 10^(4) up to 10^(103078) Further,we present two additional conjectures that are related to Robin's theorem.展开更多
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.展开更多
We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
Let D be an increasing sequence of positive integers, and consider the divisor functions:d(n, D) =∑d|n,d∈D,d≤√n1, d2(n,D)=∑[d,δ]|n,d,δ∈D,[d,δ]≤√n1,where [d,δ]=1.c.m.(d,δ). A probabilistic argumen...Let D be an increasing sequence of positive integers, and consider the divisor functions:d(n, D) =∑d|n,d∈D,d≤√n1, d2(n,D)=∑[d,δ]|n,d,δ∈D,[d,δ]≤√n1,where [d,δ]=1.c.m.(d,δ). A probabilistic argument is introduced to evaluate the series ∑n=1^∞and(n,D) and ∑n=1^∞and2(n,D).展开更多
Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas f...Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas for epq(n) and Dirichlet divisor function d(n). Key words: largest exponent; asymptotic formula; hybrid mean value; Dirichlet divisor function d(n)展开更多
文摘We propose the following conjecture on(σ)n the sum-of-divisors function:log(e'nlog logn-σ(n))/log(e'nlog log n)will increase strictly and converge to1 when n runs from the colossally abundant numbers to infinity This conjecture is a sufficient condition for the and converge to1 when n nuns from the colossally abundant numbers to infinity.This conjecture is a sufficient condition for the Ricemann hypothesis by Robin's theorem,and it is confirmed for n from10^(4 )up to 10^(103078) Further,we present two additional Riemann hypothesis by Robin's theorem,and it is confirmed forn from 10^(4) up to 10^(103078) Further,we present two additional conjectures that are related to Robin's theorem.
文摘This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.
文摘We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
文摘Let D be an increasing sequence of positive integers, and consider the divisor functions:d(n, D) =∑d|n,d∈D,d≤√n1, d2(n,D)=∑[d,δ]|n,d,δ∈D,[d,δ]≤√n1,where [d,δ]=1.c.m.(d,δ). A probabilistic argument is introduced to evaluate the series ∑n=1^∞and(n,D) and ∑n=1^∞and2(n,D).
文摘Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas for epq(n) and Dirichlet divisor function d(n). Key words: largest exponent; asymptotic formula; hybrid mean value; Dirichlet divisor function d(n)