Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium visc...Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders. By contrast, the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders. Notably, the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44. We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.展开更多
An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with dist...An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with distributed base-collector junction capacitance also taken into account. The intrinsic portion is taken as a whole and extracted directly from the measured Sparameters in the whole frequency range of operation without any special test structures. An HBT device with a 2 × 20 μm^(2) emitter-area under three different biases were used to demonstrate the extraction and verify the accuracy of the equivalent circuit.展开更多
A solid electrolyte interphase(SEI)with a robust mechanical property and a high ionic conductivity is imperative for high-performance zinc metal batteries.However,it is difficult to form such a SEI directly from an el...A solid electrolyte interphase(SEI)with a robust mechanical property and a high ionic conductivity is imperative for high-performance zinc metal batteries.However,it is difficult to form such a SEI directly from an electrolyte.In this work,a molecular crowding effect is based on the introduction of Zn(OTF)_(2)and Zn(ClO_(4))_(2)to 2 mol/L ZnSO_(4)electrolytes.Simulations and experiments indicate that the Zn(OTF)_(2)and Zn(ClO_(4))_(2)not only create a molecularly crowded electrolyte environment to promote the interaction of Zn^(2+)and OTF^(-),but also participate in the reduction to construct a robust and high ionic-conductive SEI,thus promoting metal zinc deposition to the(002)crystal surface.With this molecular crowding electrolyte,a high current density of 1 mA/cm^(2)can be obtained by assembling symmetric batteries with Zn as the anode for over 1000 h.And in a temperature environment of-10℃,a current density of 1 mA/cm^(2)can be obtained by assembling symmetric batteries with Zn for over 200 h.Zn//Bi_(2)S_(3)/VS4@C cells achieve a CE rate of up to 99.81%over 1000 cycles.Hence,the utilization of a molecular crowding electrolyte is deemed a highly effective approach to fabricating a sophisticated SEI for a zinc anode.展开更多
基金This work is supported by the Fundamental Research Funds for the Central Universities of China (No.WK2060200020) and the China Postdoctoral Science Foundation (No.2015M581998).
文摘Using 3D Langevin dynamics simulations, we investigate the effects of the shape of crowders on the dynamics of a polymer chain closure. The chain closure in spherical crowders is dominated by the increased medium viscosity so that it gets slower with the increasing volume fraction of crowders. By contrast, the dynamics of chain closure becomes very complicated with increasing volume fraction of crowders in spherocylindrical crowders. Notably, the mean closure time is found to have a dramatic decrease at a range of volume fraction of crowders 0.36-0.44. We then elucidate that an isotropic to nematic transition of spherocylindrical crowders at this range of volume fraction of crowders is responsible for the unexpected dramatic decrease in the mean closure time.
基金supported by the National Natural Science Foundation of China (Grant No. 61934006)。
文摘An improved small-signal equivalent circuit of HBT concerning the AC current crowding effect is proposed in this paper. AC current crowding effect is modeled as a parallel RC circuit composed of Cbi and Rbi, with distributed base-collector junction capacitance also taken into account. The intrinsic portion is taken as a whole and extracted directly from the measured Sparameters in the whole frequency range of operation without any special test structures. An HBT device with a 2 × 20 μm^(2) emitter-area under three different biases were used to demonstrate the extraction and verify the accuracy of the equivalent circuit.
基金supported by Jilin Provincial Natural Fund(No.20230101205JC)Chongqing Natural Science Foundation(Nos.cstc2022jcyj-msxmX0184 and CSTB2022NSCQ-MSX0241)the International Cooperation Foundation(No.20220402026GH)of Science and Technology Department of Jilin Province。
文摘A solid electrolyte interphase(SEI)with a robust mechanical property and a high ionic conductivity is imperative for high-performance zinc metal batteries.However,it is difficult to form such a SEI directly from an electrolyte.In this work,a molecular crowding effect is based on the introduction of Zn(OTF)_(2)and Zn(ClO_(4))_(2)to 2 mol/L ZnSO_(4)electrolytes.Simulations and experiments indicate that the Zn(OTF)_(2)and Zn(ClO_(4))_(2)not only create a molecularly crowded electrolyte environment to promote the interaction of Zn^(2+)and OTF^(-),but also participate in the reduction to construct a robust and high ionic-conductive SEI,thus promoting metal zinc deposition to the(002)crystal surface.With this molecular crowding electrolyte,a high current density of 1 mA/cm^(2)can be obtained by assembling symmetric batteries with Zn as the anode for over 1000 h.And in a temperature environment of-10℃,a current density of 1 mA/cm^(2)can be obtained by assembling symmetric batteries with Zn for over 200 h.Zn//Bi_(2)S_(3)/VS4@C cells achieve a CE rate of up to 99.81%over 1000 cycles.Hence,the utilization of a molecular crowding electrolyte is deemed a highly effective approach to fabricating a sophisticated SEI for a zinc anode.