This paper deals with the modeling and cross-coupling effect analysis in double-input Boost converters with multiplex current control. A ripple-based multiplex current controlled matrix model is proposed to restore th...This paper deals with the modeling and cross-coupling effect analysis in double-input Boost converters with multiplex current control. A ripple-based multiplex current controlled matrix model is proposed to restore the system's high-frequency domain dynamics information and resolve the coexistence problem of the sample-and-hold effect in multiplex current controllers, which significantly improves the resolution of the conventional average model. Based on the proposed model, both sub-harmonic and low-frequency oscillations are identified in terms of stability analysis, and the inherent mechanism of these complicated nonlinear dynamic behavior is revealed, which not only illustrates the origin of the oscillations but also points out the dominant factors in diverse types of instability situation. Besides, cross-coupling effect analysis is performed to study the interaction between the input ports with the help of the Gershgorin band, and the mechanism of the special unbalanced oscillation phenomenon is revealed. Furthermore, the sensitivity analysis approach is used to identify the key parameters with respect to the cross-coupling effect, which provides more design-oriented knowledge for practical engineering. In addition, the benefits of the proposed model are further illustrated through a comparative analysis. Finally, these theoretical results are verified by experimental ones. These results are beneficial to the improvement of performance as well as the understanding of the cross-coupling effect of multi-input converters.展开更多
A chromium(II)-catalyzed reduction cross coupling reaction was reported.This reaction utilizes inexpensive and readily available chromium dichloride as a catalyst and 4,4'-di-tert-butyl-bipyridine as a ligand to a...A chromium(II)-catalyzed reduction cross coupling reaction was reported.This reaction utilizes inexpensive and readily available chromium dichloride as a catalyst and 4,4'-di-tert-butyl-bipyridine as a ligand to achieve reduction cross coupling between trifluoromethyl olefins and alkyl bromides under mild conditions,effectively synthesizing difluoroalkene derivatives.This reaction exhibits good substrate universality and is compatible with multiple important functional groups,providing a concise synthetic pathway for constructing conjugated difluoroalkenes containing allyl difluoromethylene structural units.Preliminary mechanistic experiments indicate that alkyl bromides first undergo a reduction process to generate corresponding alkyl radicals,followed by addition to trifluoromethyl olefins.After binding with Cr(II),they undergo aβ-fluorine elimination process to generate difluoroalkenes.展开更多
Chiral carbonyl compounds frequently occur in natural products and pharmaceuticals. Additionally, they serve as important intermediates in organic synthesis. Transition metal-catalyzed asymmetric carbonylative cross-c...Chiral carbonyl compounds frequently occur in natural products and pharmaceuticals. Additionally, they serve as important intermediates in organic synthesis. Transition metal-catalyzed asymmetric carbonylative cross-coupling reactions are among the most straightforward and effective methods for synthesizing chiral carbonyl compounds, including esters, amides, and ketones. The advances in asymmetric carbonylative cross-coupling reactions using various O-, N-, C-, and S-containing nucleophiles or electrophiles over the past decade are summarized.展开更多
A signifcant challenge in the progress and development of Building-Integrated-Photovoltaic(B-I-PV)systems is concerned with the extraction of maximum power from PV modules.The PV system archtecture is an essential fea...A signifcant challenge in the progress and development of Building-Integrated-Photovoltaic(B-I-PV)systems is concerned with the extraction of maximum power from PV modules.The PV system archtecture is an essential feature to extract the maximum power.The conventional PV-centralinverter architecture consists of various connections among the PV modules,which are sensitive to shading effects and pro-duces mismatching power loss under partial shading conditions(PSCs),Hence,photovoltaic-distributed-maximum power point tracking(PV-D-MPPT)architecture has been proposed to extract the maximum power.In.PV-1 D-MPPT architecture,the output terminals of DC-DC converters are connected either in series or parallel configuration.The main limitation of the series configuration in open-loop MPPT control is the crosscoupling effect.Because of cross-coupling effects,the maximum-power-point(M-P-P)operation of shaded PV modules is lost under PSCs.The lost in M-P-P operation of shaded PV module also affects the unshaded modules M-P-P operation.Under crosscoupling ffeets,the DC-DC converters are consuming the power instead of delivering to the load.Despite the research activity,there are hardly any papers presenting a clear,comprehensive and mathematical analysis on the existence of cross-couplings in PV string-integrated-converters(S-1-Cs).This article presents a mathematical analysis and also explains the conditions for the existent of cross-coupling ffeets.The experimental results also validate with the mathematically analysed results.This article also discusses the modeling of the two-diode model of PV module,design of boost type S-1C,and the Perturb and Observe(P&O)MPPT algorithm implementation.展开更多
Selective defluorinative functionalization of trifluoromethylarenes(ArCF3)to obtain the pharmaceutically commonα,α-difluorobenzylic motif is an attractive and elegant synthetic route.Over the past decade,although C(...Selective defluorinative functionalization of trifluoromethylarenes(ArCF3)to obtain the pharmaceutically commonα,α-difluorobenzylic motif is an attractive and elegant synthetic route.Over the past decade,although C(sp^(3))-F bonds functionalization have been greatly developed,catalytic cross-coupling of trifluoromethylarenes with C-H of terminal alkynes remains a challenge.Here,we report an approach to achieve Sonogashira-type cross-coupling of trifluoromethylarenes with terminal alkynes C(sp)-H bonds via photoredox and Cu/L dual catalysis.Tridentate anionic ligand is pivotal to realize this C-H sp-sp^(3) cross-coupling.Moreover,this unique catalytic system is also suitable for cross-coupling of C(sp^(3))-F bonds with azoles C(sp^(2))-H bonds.A series of trifluoromethylarenes,terminal alkynes and azoles with various functional groups are compatible with this protocol affording a variety of defluoroalkynylation or defluoroazolation products.Preliminary mechanistic studies indicated that deprotonated BINOL involved as a photocatalyst to activate ArCF3 rather than a ligand to the metal.展开更多
In most Suzuki–Miyaura carbon-carbon cross-coupling reactions,the borabicyclo[3.3.1]nonane scaffold(9-BBN)only serves as an auxiliary facilitating the transmetalation step and thus is transformed into by-products.The...In most Suzuki–Miyaura carbon-carbon cross-coupling reactions,the borabicyclo[3.3.1]nonane scaffold(9-BBN)only serves as an auxiliary facilitating the transmetalation step and thus is transformed into by-products.There are rare examples where the 9-BBN derivatives serve as the potentially diverse C8 building blocks in cross-coupling reactions.Herein,we report a cobalt-catalyzed migratory carboncarbon cross-coupling reaction of the in situ formed 9-BBN ate complexes to afford diverse aryl-and alkyl-functionalized cyclooctenes.Preliminary mechanistic studies suggest the oxidation-induced cisbicyclo[3.3.0]oct-1-ylborane is the key intermediate in this migratory cross-coupling reaction,which promotes the development of other diverse migratory cross-coupling of borate complexes.展开更多
The switchable cross-coupling of indoles and pyridotriazoles through carbene insertion at C_(2)-or C_(3)-positon has been developed in this paper.This highly site-selective C-H carbenoid functionalization is determine...The switchable cross-coupling of indoles and pyridotriazoles through carbene insertion at C_(2)-or C_(3)-positon has been developed in this paper.This highly site-selective C-H carbenoid functionalization is determined by both the Rh-catalyst species and auxiliary groups.[Cp∗RhCl_(2)]_(2) and coordinating pyrimidyl group direct the C-H carbenoid functionalization to occur at the C_(2)-position,while Rh2OAc4 and noncoordinating benzyl group lead the reaction to occur at the C_(3)-position of the indoles.This regioselective C−H functionalization strategy is of significant importance for the discovery of indole drugs.展开更多
An N-heterocyclic carbene(NHC)catalyzed enantioselective cyclisation and trifluoromethylation of olefins with cinnamaldehydes via radical relay cross-coupling in the presence of Togni reagent is reported andδ-lactone...An N-heterocyclic carbene(NHC)catalyzed enantioselective cyclisation and trifluoromethylation of olefins with cinnamaldehydes via radical relay cross-coupling in the presence of Togni reagent is reported andδ-lactones tolerated with stereogenic centers atβ-andγ-positions are obtained in moderate to high yields and with high enantioselectivities.Further computational studies explain that the radical crosscoupling step is the key to determining the enantioselectivity.Energy analysis of key transition states and intermediates also provides a reasonable explanation for the difficulty of diastereoselective control.DFT calculations also reveal that the hydrogen-bonding interaction plays a vital role in the promotion of this chemistry.展开更多
The Pd-catalyzed Suzuki-Miyaura coupling reaction is a crucial tool for constructing C-C bonds.Currently,the organic solvents employed during reaction may cause serious environmental problems.Moreover,the low solubili...The Pd-catalyzed Suzuki-Miyaura coupling reaction is a crucial tool for constructing C-C bonds.Currently,the organic solvents employed during reaction may cause serious environmental problems.Moreover,the low solubility of inorganic bases in organic solvents leads to enormous mass transfer resistance.To address this issue,the Pickering droplets reactor stabilized by Pd/g-C_(3)N_(4)at substrate-water two-phase interface is reported.Benefiting from the hydrophobic conjugated framework and hydrophilic terminal groups,Pd/g-C_(3)N_(4)can configure stable Pickering emulsion without additional functionalization.The Pd loaded catalysts exhibits excellent performance(TOF=21852 h^(-1))for the Suzuki-Miyaura coupling reaction,which is deriving from unique electronic structure of g-C_(3)N_(4)and high interfacial area of emulsion.Moreover,there is no clear decrease in reactivity after six cycles(conversion>86%).In this study,the organic solvent was replaced by reaction substrate,and the high activity can be achieved for various halogenated aromatic hydrocarbons and their derivatives.展开更多
The use of thallium(I) hydroxide (TlOH) as a base is known to extremely accelerate the Suzuki-Miyaura cross-coupling reaction using organoboronic acid or organoboronic acid ester as a substrate. Here, we investigated ...The use of thallium(I) hydroxide (TlOH) as a base is known to extremely accelerate the Suzuki-Miyaura cross-coupling reaction using organoboronic acid or organoboronic acid ester as a substrate. Here, we investigated the effects of TlOH by comparing with other conventional bases such as KOH, K2CO3, and CsF for Pd0-mediated rapid cross-coupling reactions between CH3I and organoborane reagents, such as phenyl-, (Z)-4-benzyloxy-2-butenyl-, and benzylboronic acid pinacol esters under the conditions CH3I/borane/Pd0/base (1:40:1:3) in THF/H2O or DMF/H2O for 5 min with an aim to fabricate a PET tracer efficiently. Consequently, however, the use of TlOH was much less efficient than the other bases for the acceleration of cross-coupling reactions. Thus, it was reconfirmed that the milder and non-toxic conditions using K2CO3 or CsF so far developed by our group were most appropriate for the rapid C-methylations.展开更多
The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytro...The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.展开更多
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro...Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.展开更多
Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based met...Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.展开更多
Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative patho...Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.展开更多
AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 group...AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs.展开更多
Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forc...Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.展开更多
The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) underg...The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.展开更多
In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural a...In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.展开更多
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior...This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.展开更多
Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenv...Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies.展开更多
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-014)the National Natural Science Foundation of China (Grant No. 51577141)。
文摘This paper deals with the modeling and cross-coupling effect analysis in double-input Boost converters with multiplex current control. A ripple-based multiplex current controlled matrix model is proposed to restore the system's high-frequency domain dynamics information and resolve the coexistence problem of the sample-and-hold effect in multiplex current controllers, which significantly improves the resolution of the conventional average model. Based on the proposed model, both sub-harmonic and low-frequency oscillations are identified in terms of stability analysis, and the inherent mechanism of these complicated nonlinear dynamic behavior is revealed, which not only illustrates the origin of the oscillations but also points out the dominant factors in diverse types of instability situation. Besides, cross-coupling effect analysis is performed to study the interaction between the input ports with the help of the Gershgorin band, and the mechanism of the special unbalanced oscillation phenomenon is revealed. Furthermore, the sensitivity analysis approach is used to identify the key parameters with respect to the cross-coupling effect, which provides more design-oriented knowledge for practical engineering. In addition, the benefits of the proposed model are further illustrated through a comparative analysis. Finally, these theoretical results are verified by experimental ones. These results are beneficial to the improvement of performance as well as the understanding of the cross-coupling effect of multi-input converters.
文摘A chromium(II)-catalyzed reduction cross coupling reaction was reported.This reaction utilizes inexpensive and readily available chromium dichloride as a catalyst and 4,4'-di-tert-butyl-bipyridine as a ligand to achieve reduction cross coupling between trifluoromethyl olefins and alkyl bromides under mild conditions,effectively synthesizing difluoroalkene derivatives.This reaction exhibits good substrate universality and is compatible with multiple important functional groups,providing a concise synthetic pathway for constructing conjugated difluoroalkenes containing allyl difluoromethylene structural units.Preliminary mechanistic experiments indicate that alkyl bromides first undergo a reduction process to generate corresponding alkyl radicals,followed by addition to trifluoromethyl olefins.After binding with Cr(II),they undergo aβ-fluorine elimination process to generate difluoroalkenes.
文摘Chiral carbonyl compounds frequently occur in natural products and pharmaceuticals. Additionally, they serve as important intermediates in organic synthesis. Transition metal-catalyzed asymmetric carbonylative cross-coupling reactions are among the most straightforward and effective methods for synthesizing chiral carbonyl compounds, including esters, amides, and ketones. The advances in asymmetric carbonylative cross-coupling reactions using various O-, N-, C-, and S-containing nucleophiles or electrophiles over the past decade are summarized.
文摘A signifcant challenge in the progress and development of Building-Integrated-Photovoltaic(B-I-PV)systems is concerned with the extraction of maximum power from PV modules.The PV system archtecture is an essential feature to extract the maximum power.The conventional PV-centralinverter architecture consists of various connections among the PV modules,which are sensitive to shading effects and pro-duces mismatching power loss under partial shading conditions(PSCs),Hence,photovoltaic-distributed-maximum power point tracking(PV-D-MPPT)architecture has been proposed to extract the maximum power.In.PV-1 D-MPPT architecture,the output terminals of DC-DC converters are connected either in series or parallel configuration.The main limitation of the series configuration in open-loop MPPT control is the crosscoupling effect.Because of cross-coupling effects,the maximum-power-point(M-P-P)operation of shaded PV modules is lost under PSCs.The lost in M-P-P operation of shaded PV module also affects the unshaded modules M-P-P operation.Under crosscoupling ffeets,the DC-DC converters are consuming the power instead of delivering to the load.Despite the research activity,there are hardly any papers presenting a clear,comprehensive and mathematical analysis on the existence of cross-couplings in PV string-integrated-converters(S-1-Cs).This article presents a mathematical analysis and also explains the conditions for the existent of cross-coupling ffeets.The experimental results also validate with the mathematically analysed results.This article also discusses the modeling of the two-diode model of PV module,design of boost type S-1C,and the Perturb and Observe(P&O)MPPT algorithm implementation.
基金support of this work by the National Natural Science Foundation of China(Nos.22371307,21971267)the program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2017ZT07C069).
文摘Selective defluorinative functionalization of trifluoromethylarenes(ArCF3)to obtain the pharmaceutically commonα,α-difluorobenzylic motif is an attractive and elegant synthetic route.Over the past decade,although C(sp^(3))-F bonds functionalization have been greatly developed,catalytic cross-coupling of trifluoromethylarenes with C-H of terminal alkynes remains a challenge.Here,we report an approach to achieve Sonogashira-type cross-coupling of trifluoromethylarenes with terminal alkynes C(sp)-H bonds via photoredox and Cu/L dual catalysis.Tridentate anionic ligand is pivotal to realize this C-H sp-sp^(3) cross-coupling.Moreover,this unique catalytic system is also suitable for cross-coupling of C(sp^(3))-F bonds with azoles C(sp^(2))-H bonds.A series of trifluoromethylarenes,terminal alkynes and azoles with various functional groups are compatible with this protocol affording a variety of defluoroalkynylation or defluoroazolation products.Preliminary mechanistic studies indicated that deprotonated BINOL involved as a photocatalyst to activate ArCF3 rather than a ligand to the metal.
基金supported by the National Natural Science Foundation of China(No.22171046)the Hundred-Talent Project of Fujian(No.50021113)Fuzhou University(No.0480-00489503)。
文摘In most Suzuki–Miyaura carbon-carbon cross-coupling reactions,the borabicyclo[3.3.1]nonane scaffold(9-BBN)only serves as an auxiliary facilitating the transmetalation step and thus is transformed into by-products.There are rare examples where the 9-BBN derivatives serve as the potentially diverse C8 building blocks in cross-coupling reactions.Herein,we report a cobalt-catalyzed migratory carboncarbon cross-coupling reaction of the in situ formed 9-BBN ate complexes to afford diverse aryl-and alkyl-functionalized cyclooctenes.Preliminary mechanistic studies suggest the oxidation-induced cisbicyclo[3.3.0]oct-1-ylborane is the key intermediate in this migratory cross-coupling reaction,which promotes the development of other diverse migratory cross-coupling of borate complexes.
基金CAMS Innovation Fund for Medical Sciences(CIFMS)(Nos.2022-I2M-1-013,2022-I2M-1-014,2022-I2M-2-002).
文摘The switchable cross-coupling of indoles and pyridotriazoles through carbene insertion at C_(2)-or C_(3)-positon has been developed in this paper.This highly site-selective C-H carbenoid functionalization is determined by both the Rh-catalyst species and auxiliary groups.[Cp∗RhCl_(2)]_(2) and coordinating pyrimidyl group direct the C-H carbenoid functionalization to occur at the C_(2)-position,while Rh2OAc4 and noncoordinating benzyl group lead the reaction to occur at the C_(3)-position of the indoles.This regioselective C−H functionalization strategy is of significant importance for the discovery of indole drugs.
基金financial supports for this work are provided by the National Natural Science Foundation of China(Nos.21871160,21672121,22071130)。
文摘An N-heterocyclic carbene(NHC)catalyzed enantioselective cyclisation and trifluoromethylation of olefins with cinnamaldehydes via radical relay cross-coupling in the presence of Togni reagent is reported andδ-lactones tolerated with stereogenic centers atβ-andγ-positions are obtained in moderate to high yields and with high enantioselectivities.Further computational studies explain that the radical crosscoupling step is the key to determining the enantioselectivity.Energy analysis of key transition states and intermediates also provides a reasonable explanation for the difficulty of diastereoselective control.DFT calculations also reveal that the hydrogen-bonding interaction plays a vital role in the promotion of this chemistry.
基金the National Natural Science Foundation of China(22178243).
文摘The Pd-catalyzed Suzuki-Miyaura coupling reaction is a crucial tool for constructing C-C bonds.Currently,the organic solvents employed during reaction may cause serious environmental problems.Moreover,the low solubility of inorganic bases in organic solvents leads to enormous mass transfer resistance.To address this issue,the Pickering droplets reactor stabilized by Pd/g-C_(3)N_(4)at substrate-water two-phase interface is reported.Benefiting from the hydrophobic conjugated framework and hydrophilic terminal groups,Pd/g-C_(3)N_(4)can configure stable Pickering emulsion without additional functionalization.The Pd loaded catalysts exhibits excellent performance(TOF=21852 h^(-1))for the Suzuki-Miyaura coupling reaction,which is deriving from unique electronic structure of g-C_(3)N_(4)and high interfacial area of emulsion.Moreover,there is no clear decrease in reactivity after six cycles(conversion>86%).In this study,the organic solvent was replaced by reaction substrate,and the high activity can be achieved for various halogenated aromatic hydrocarbons and their derivatives.
文摘The use of thallium(I) hydroxide (TlOH) as a base is known to extremely accelerate the Suzuki-Miyaura cross-coupling reaction using organoboronic acid or organoboronic acid ester as a substrate. Here, we investigated the effects of TlOH by comparing with other conventional bases such as KOH, K2CO3, and CsF for Pd0-mediated rapid cross-coupling reactions between CH3I and organoborane reagents, such as phenyl-, (Z)-4-benzyloxy-2-butenyl-, and benzylboronic acid pinacol esters under the conditions CH3I/borane/Pd0/base (1:40:1:3) in THF/H2O or DMF/H2O for 5 min with an aim to fabricate a PET tracer efficiently. Consequently, however, the use of TlOH was much less efficient than the other bases for the acceleration of cross-coupling reactions. Thus, it was reconfirmed that the milder and non-toxic conditions using K2CO3 or CsF so far developed by our group were most appropriate for the rapid C-methylations.
基金the National Natural Science Foundation of China(No.52373311)the Innovation Program for Quantum Science and Technology(No.2021ZD0301605)+3 种基金provided by the National Natural Science Foundation of China(Nos.92263202 and 12374020)the National Key Research and Development Program of China(No.2020YFA0711502)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB33000000)support from the Australian Research Council(ARC Discovery Project,No.DP180102976).
文摘The magnetic proximity effect enables interfacial modulation of excitonic and spin-valley properties in transition metal dichalcogenides(TMDs),offering a versatile route toward next-generation spintronic and valleytronic devices.However,the inherently weak photoluminescence(PL)of bright excitons—suppressed by proximity-induced darkening mechanisms—hinders the optical detection of magnetic interactions.Here,we demonstrate substantial exciton emission enhancement in CrOCl/WSe_(2)(HS)and twisted 90°-CrOCl/CrOCl/WSe_(2)(THS)heterostructures by employing plasmonic Au nanopillar arrays to activate surface plasmon polariton(SPP)coupling.The neutral exciton emission intensity is enhanced by factors of 5 and 18 for HS/Au and THS/Au,respectively,with enhancements persisting under high magnetic fields and elevated temperatures(~10-fold in THS/Au).Enabled by this amplification,we observe pronounced Zeeman splitting and modified intervalley relaxation pathways,indicating significant magnetic proximity interactions.Finite-element simulations and first-principles calculations reveal that the enhancement arises from local electromagnetic field concentration and layer-dependent interfacial coupling.Our results establish SPP-assisted PL enhancement as an effective strategy for probing weak magneto-optical signatures,paving the way for detailed exploration of exciton-magnon coupling and interface-driven quantum phenomena in twodimensional(2D)magnetic heterostructures.
基金supported by the National Natural Science Foundation of China(No.62464010)Spring City Plan-Special Program for Young Talents(K202005007)+2 种基金Yunnan Talents Support Plan for Young Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Frontier Research Team of Kunming University 2023.
文摘Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(No.RS-2022-00143178)the Ministry of Education(MOE)(Nos.2022R1A6A3A13053896 and 2022R1F1A1074616),Republic of Korea.
文摘Beam-tracking simulations have been extensively utilized in the study of collective beam instabilities in circular accelerators.Traditionally,many simulation codes have relied on central processing unit(CPU)-based methods,tracking on a single CPU core,or parallelizing the computation across multiple cores via the message passing interface(MPI).Although these approaches work well for single-bunch tracking,scaling them to multiple bunches significantly increases the computational load,which often necessitates the use of a dedicated multi-CPU cluster.To address this challenge,alternative methods leveraging General-Purpose computing on Graphics Processing Units(GPGPU)have been proposed,enabling tracking studies on a standalone desktop personal computer(PC).However,frequent CPU-GPU interactions,including data transfers and synchronization operations during tracking,can introduce communication overheads,potentially reducing the overall effectiveness of GPU-based computations.In this study,we propose a novel approach that eliminates this overhead by performing the entire tracking simulation process exclusively on the GPU,thereby enabling the simultaneous processing of all bunches and their macro-particles.Specifically,we introduce MBTRACK2-CUDA,a Compute Unified Device Architecture(CUDA)ported version of MBTRACK2,which facilitates efficient tracking of single-and multi-bunch collective effects by leveraging the full GPU-resident computation.
基金supported by the National Natural Science Foundation of China(No.32170121).
文摘Benzalkonium chloride(BAC)is widely employed as a broad-spectrum biocide and has emerged as a significant environmental pollutant.Polymyxin B(PB)serves as the last-line defense for the treatment of Gram-negative pathogens.Previous studies reported that BAC-adapted Pseudomonas aeruginosa increased the tolerance to PB.Herein,we present the novel finding that the combination of BAC and PB exhibited synergistic antibacterial effects against P.aeruginosa.Time-killing assay demonstrated a significant reduction in bacterial cell viability.Scanning electron microscopy,zeta potential analysis,hydrophobicity measurements,and fluorescence probe analyses collectively revealed severe disruption of the cell envelope and membrane potential induced by the combination of BAC and PB.Transcriptomic analysis revealed that the BAC-PB combination notably downreg-ulated the expression of genes involved in lipid A modification and cell envelope production,including phoPQ,pmrAB,bamABCDE,lptABCDEG,lolB,yidC,and murJ.Additionally,the combination group exhibited augmented production of reactive oxygen species and diminished ATP synthesis.The expression of the genes associated with substance metabolism and energy generation was significantly impeded.This study provides significant implica-tions for the interactions of biocides and antibiotics on Gram-negative pathogens,while also addressing antibiotic resistance and developing the external treatment strategy for Pseudomonas-infected wounds and burns.
基金Supported by the Zhejiang Medical Health Science and Technology Project(No.2021KY217)the Basic Public Welfare Research Project of Wenzhou Municipal Science and Technology Bureau(No.2024Y1221).
文摘AIM:To evaluate and compare alterations in the effective lens position(ELP)and refractive outcomes among three distinct intraocular lens(IOL)types.METHODS:Patients with cataracts were enrolled and allocated to 3 groups:Group A(implanted with the SN6CWS),Group B(implanted with the MI60),and Group C(implanted with the Aspira-aA).ELP measurements were obtained with swept-source optical coherence tomography(SS-OCT)at 1d,1wk,1mo,and 3mo postoperatively.Subjective refraction assessments were conducted at 1wk,1mo,and 3mo following surgery.RESULTS:The study included 189 eyes of 150 cataract patients(66 males).There were 77 eyes in Group A,55 eyes in Group B,and 57 eyes in Group C.The root mean square of the ELP(ELPRMS)within the initial 3mo was significantly lower for Group A than for Groups B and C.Refractive changes within Group A were not significant across the time points of 1wk,1mo,and 3mo.Conversely,both Group B and Group C demonstrated statistically significant shifts toward hyperopia from 1wk to 3mo postsurgery.CONCLUSION:Among the three IOLs examined,the SN6CWS IOL showes the greatest stability during the first 3mo postoperatively.Between 1wk and 3mo after surgery,notable hyperopic shifts are evident in eyes implanted with the MI60 and Aspira-aA IOLs,whereas refractive outcomes remain relatively constant in eyes implanted with SN6CWS IOLs.
文摘Electrical and electronic devices face significant challenges in heatmanagement due to their compact size and high heat flux,which negatively impact performance and reliability.Conventional coolingmethods,such as forced air cooling,often struggle to transfer heat efficiently.In contrast,thermoelectric coolers(TECs)provide an innovative active cooling solution to meet growing thermal management demands.In this research,a refrigerant based on mono ethylene glycol and distilled water was used instead of using gases,in addition to using thermoelectric cooling units instead of using a compressor in traditional refrigeration systems.This study evaluates the performance of a Peltierbased thermalmanagement systemby analyzing the effects of using two,three,and four Peltiermodules on cooling rates,power consumption,temperature reduction,and system efficiency.Experimental results indicate that increasing the number of Peltier modules significantly enhances cooling performance.The four-module system achieved an optimal balance between cooling speed and energy efficiency,reducing the temperature of a liquidmixture(30% mono ethylene glycol+70% distilled water plus laser dyes)to 8℃ in just 17 min.It demonstrated a cooling rate of 0.794℃/min and a high coefficient of performance(COP)of 1.2 while consuming less energy than the two-and three-module systems.Furthermore,the study revealed that increasing the number of modules led to faster air cooling and improved temperature reduction.These findings highlight the importance of selecting the optimal number of Peltier modules to enhance efficiency and cooling speed whileminimizing energy consumption.This makes TEC technology a sustainable and effective solution for applications requiring rapid and reliable thermal management.
基金supported by the National Key Research and Development Program of Chinathe National Natural Science Foundation of China (Grant Nos.2024YFA1408000,12474097,and2023YFA1406001)+2 种基金the Guangdong Provincial Quantum Science Strategic Initiative (Grant No.GDZX2201001)the Center for Computational Science and Engineering at Southern University of Science and Technology,the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen(for J.L.Z.and Y.L.)the Chinese funding sources applied via HPSTAR。
文摘The magnetic properties and Kondo effect in Ce3TiBi5 with a quasi-one-dimensional structure were investigated using in situ high-pressure resistivity measurements up to 48 GPa.At ambient pressure,Ce_(3)TiBi_(5) undergoes an antiferromagnetic(AFM)transition at T_(N)∼5 K.Under high pressures within 8.9 GPa,we find that Kondo scattering contributes differently to the high-temperature resistance,R(T),depending on the applied current direction,demonstrating a significantly anisotropic Kondo effect.The complete P–T phase diagram has been constructed,in which the pressure dependence of T_(N) exhibits a dome-like shape.The AFM order remains robust under pressure,even when the coherence temperature T^(*) far exceeds 300 K.We attribute the observed anisotropic Kondo effect and the robust AFM to the underlying anisotropy in electronic hybridization under high pressure.
基金supported by the CAS Strategic Priority Research Program(No.XDB0760102),the Ministry of Science and Technology of China(No.2022YFF0802501)the Major Science and Technology Infrastructure Maintenance and Transformation Project of the Chinese Academy of Sciences,Shanghai Science and Technology Innovation Action Plan-Phospherus Project(No.23YF1426200)the National Key Research and Development Program of China(No.2024YFE0212200).
文摘In winter 2018,an aerosol physicochemical experiment was conducted in the Western Pacific Ocean(WPO)aboard the Research Vessel KEXUE of Chinese Academy of Sciences.This study systematically investigated both natural and anthropogenic effects on marine aerosols optical properties,as well as the applicability of multi-satellite products and IMPROVE equation.The averaged aerosol optical depth(AOD500 nm)was 0.31±0.16 andÅngström exponent440–675 nm was 0.29±0.30.In offshore China,significant anthropogenic emissions affected the marine environment.In remote WPO,dust aerosols transported from northern China,Siberia,Central Asia,and those settling from the upper troposphere originating from north Africa,Arabian peninsula,and western India,were dominant.The spatial trends of AOD were opposite in the mid-latitude and southern seas of WPO.The highest AOD,0.32±0.23,appeared along the coast of South Asia at mid-latitude,decreasing from offshore seas to remote oceans.In low-latitude and equatorial seas,AOD significantly increased from coast to remote oceans.Ångström exponent dropped significantly from the coast to remote oceans as anthropogenic influence diminished across the entire WPO.Correlation analysis showed that both MODIS-C6 and Himawari AOD prod-ucts showed similar applicability in coastal urban areas,while Himawari AOD is highly recommended for coastal background and marine environment due to its finer resolution.The extinction coefficient derived from PM_(2.5) chemical compositions using IMPROVE algorithm exhibited a significant correlation(R^(2)=0.58)with the con-currently measured AOD in the absence of long-distance transport,suggesting that the IMPROVE is a reasonable proxy of the columnar average of marine aerosol extinctions free from transport influences.
文摘This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment.
文摘Background:While the treatment of metastatic renal cell carcinoma(mRCC)is evolving due to immune checkpoint inhibitors(ICIs),optimal strategies for later lines of therapy have yet to be defined.The combination of lenvatinib and everolimus represents a viable option,and the present review aimed to summarize its activity,effectiveness,and safety.Methods:A systematic review of the literature was conducted using PubMed,targeting studies published between 2018 and 2025.Eligible studies included English-language prospective and retrospective trials reporting survival outcomes in mRCC patients treated with lenvatinib and everolimus after at least one ICI-containing regimen.Results:Nine studies met the inclusion criteria,encompassing a total of 441 patients.The lenvatinib and everolimus combination was primarily used in the third and subsequent lines of therapy.Median overall survival ranged from 7.5 to 24.5 months,while median progression-free survival was more consistent,between 6.1 and 6.7 months,except for one study reporting 12.9 months.Objective response rates varied widely(14.0%–55.7%).Adverse events of grade≥3 did not exceed the expected rate,with diarrhoea and proteinuria as the most reported events.Dose reductions and treatment discontinuations due to toxicity occurred but were generally lower than in prior pivotal trials.Conclusions:Real-world evidence suggests that lenvatinib and everolimus represent an effective and safe option after ICI failure in mRCC patients.Nevertheless,the lack of randomized phase III trials and the heterogeneity of existing studies highlight the need for more robust prospective research to guide post-ICI therapeutic strategies.