Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,w...Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.展开更多
This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administratio...This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.展开更多
In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in...In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.展开更多
Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches m...Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.展开更多
Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progre...Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progression and provide symptomatic improvement in patients with IEM.Each metabolic disorder is unique,with the missing enzyme or transporter protein causing substrate deficiency or toxic byproduct production.Knowledge about the distribution of deficient enzymes,the percentage of enzymes replaced by LT,and the extent of extrahepatic involvement helps anticipate and manage complications in the perioperative period.Most patients have multisystem involvement and can be on complex dietary regimens.Metabolic decompensation can be triggered due to the stress response to surgery,fasting and other unanticipated complications perioperatively.Thus,a multidisciplinary team’s input including those from metabolic specialists is essential to develop disease and patient-specific strategies for the perioperative management of these patients during LT.In this review,we outline the classification of IEM,indications for LT along with potential benefits,basic metabolic defects and their implications,details of extrahepatic involvement and perioperative management strategies for LT in children with some of the commonly presenting IEM,to assist anesthesiologists handling this cohort of patients.展开更多
This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already...This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already during the optimization.Consequently,the trajectory is designed such that the Linear Time-Varying(LTV)dynamic system,describing the controller’s error dynamics,is stable,while additionally the desired optimality criterion is optimized and all enforced constraints on the trajectory are fulfilled.This is achieved by means of a Lyapunov stability analysis of the LTV dynamics within the optimization problem using a time-dependent,quadratic Lyapunov function candidate.Special care is taken with regard to ensuring the correct definiteness of the ensuing matrices within the Lyapunov stability analysis,specifically considering a numerically stable formulation of these in the numerical optimization.The developed algorithm is applied to a trajectory design problem for which the LTV system is part of the path-following error dynamics,which is required to be stable.The main benefit of the proposed scheme in this context is that the designed trajectory trades-off the required stability and robustness properties of the LTV dynamics with the optimality of the trajectory already at the design phase and thus,does not produce unstable optimal trajectories the system must follow in the real application.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address th...Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.展开更多
A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency a...A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and un...In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.展开更多
Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
Industrial robots are integral to modern manufacturing systems,enabling high precision,high throughput,and flexibility.However,errors in accuracy and repeatability,which arise from a variety of sources such as mechani...Industrial robots are integral to modern manufacturing systems,enabling high precision,high throughput,and flexibility.However,errors in accuracy and repeatability,which arise from a variety of sources such as mechanical wear,calibration issues,and environmental factors,can significantly impact the performance of industrial robots.This paper aims to explore the theoretical modeling of errors in industrial robot systems and propose compensation strategies to enhance their accuracy and repeatability.Key factors contributing to errors,such as kinematic,dynamic,and environmental influences,are discussed in detail.Additionally,the paper explores various compensation techniques,including geometric error compensation,dynamic compensation,and adaptive control approaches.Through the integration of error modeling and compensation methods,industrial robots can achieve improved performance,ensuring higher operational efficiency and product quality.The paper concludes by highlighting the challenges and future research directions for improving the accuracy and repeatability of industrial robots in practical applications.展开更多
Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-v...Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-varying,nonlinear,and strongly coupled characteristics of parallel machining modules.In addition,the time delay in the system reduces the timeliness of the feedback data,thereby making online contour error calculations and compensation particularly difficult.To solve this problem,the generation mechanism of the time delay of the feedback data and contour error is revealed,and a systematic method for the identification of the time-delay parameter based on Beckhoff’s tracking error calculation mechanism is proposed.The temporal alignment between the position commands and feedback data enables the online calculation of the contour error.On this basis,the tracking error of the drive axes(an important factor resulting in end-effector contour errors)is used for the contour error calculation.Considering the ambiguous parameter-setting logic of the servo drive,the servo parameter is calculated in reverse using the steady-state error to obtain the tracking error model of the drive axes.Furthermore,combined with the system time-delay model,an online correction method for the tracking error estimation model is established.To achieve an accurate mapping of the drive-axis tracking error and end-effector contour error,a bounded iterative search method for the nearest contour point and online calculation model for the contour error are respectively established.Finally,an online compensation controller for contour error is designed.Its effectiveness is verified by a machining experiment on a frame workpiece.The machining results show that the contour error reduces from 68μm to 45μm,and the finish machining accuracy increases by 34%.This study provides a feasible method for online compensation of contour error in a system with time delay.展开更多
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding compo...Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding components,result in dimensional deviations that can lead to poor part quality and reduced precision in high-speed manufacturing processes.This paper explores thermal error modeling and compensation methods for the spindle of five-axis CNC machine tools.A detailed analysis of the heat generation,transfer mechanisms,and finite element analysis(FEA)is presented to develop accurate thermal error models.Compensation techniques,such as model-based methods,sensor-based methods,real-time compensation algorithms,and hybrid approaches,are critically reviewed.This study also discusses the challenges in real-time compensation and the integration of thermal error compensation with machine tool control systems.The objective is to provide a comprehensive understanding of thermal error phenomena and their compensation strategies,ultimately contributing to the enhancement of machining accuracy in advanced manufacturing applications.展开更多
The particle identification(PID)of hadrons plays a crucial role in particle physics experiments,especially in flavor physics and jet tagging.The cluster counting method,which measures the number of primary ionizations...The particle identification(PID)of hadrons plays a crucial role in particle physics experiments,especially in flavor physics and jet tagging.The cluster counting method,which measures the number of primary ionizations in gaseous detectors,is a promising breakthrough in PID.However,developing an effective reconstruction algorithm for cluster counting remains challenging.To address this challenge,we propose a cluster counting algorithm based on long short-term memory and dynamic graph convolutional neural networks for the CEPC drift chamber.Experiments on Monte Carlo simulated samples demonstrate that our machine learning-based algorithm surpasses traditional methods.It improves the K/πseparation of PID by 10%,meeting the PID requirements of CEPC.展开更多
According to the World Health Organization(WHO)manual,sperm concentration should be measured using an improved Neubauer hemocytometer,while sperm motility should be measured by manual assessment.However,in China,thous...According to the World Health Organization(WHO)manual,sperm concentration should be measured using an improved Neubauer hemocytometer,while sperm motility should be measured by manual assessment.However,in China,thousands of laboratories do not use the improved Neubauer hemocytometer or method;instead,the Makler counting chamber is one of the most widely used chambers.To study sources of error that could impact the measurement of the apparent concentration and motility of sperm using the Makler counting chamber and to verify its accuracy for clinical application,67 semen samples from patients attending the Department of Andrology,West China Second University Hospital,Sichuan University(Chengdu,China)between 13 September 2023 and 27 September 2023,were included.Compared with applying the cover glass immediately,delaying the application of the cover glass for 5 s,10 s,and 30 s resulted in average increases in the sperm concentration of 30.3%,74.1%,and 107.5%,respectively(all P<0.0001)and in the progressive motility(PR)of 17.7%,30.8%,and 39.6%,respectively(all P<0.0001).However,when the semen specimens were fixed with formaldehyde,a delay in the application of the cover glass for 5 s,10 s,and 30 s resulted in an average increase in the sperm concentration of 6.7%,10.8%,and 14.6%,respectively,compared with immediate application of the cover glass.The accumulation of motile sperm due to delays in the application of the cover glass is a significant source of error with the Makler counting chamber and should be avoided.展开更多
Environmental DNA(e DNA)methods have emerged as a promising tool for studying a broad spectrum of biological taxa.However,metabarcoding studies of avian biodiversity using e DNA have received little attention.In this ...Environmental DNA(e DNA)methods have emerged as a promising tool for studying a broad spectrum of biological taxa.However,metabarcoding studies of avian biodiversity using e DNA have received little attention.In this study,we compared waterbird biodiversity derived from e DNA metabarcoding with that obtained from traditional point counting surveys at 23 sites in Tai Lake of eastern China and evaluated the accuracy of e DNA metabarcoding for waterbird community studies.The point counting method recorded a higher total number of waterbird species(22)compared to the e DNA technique(16).While e DNA achieved a 74.5%detection rate for waterbird species and was able to identify a significantly greater number of species(12.48±1.97)at each sampling site than point counting method(6.13±2.69),particularly highlighting several rare and elusive species,it failed to detect some species commonly observed by the point counting method.The alpha diversity analysis revealed no significant differences in waterbird diversity between the e DNA method and the point counting method,except that the e DNA method exhibited lower Pielou evenness.Waterbird e DNA sequencing abundance correlated significantly with species occurrence,whereas Spearman's analysis indicated no significant difference between e DNA sequence abundance and species abundance from the point counting method.e DNA method detected no significant difference in waterbird composition between sampling sites,while the point counting method revealed significant differences.Consequently,e DNA is an effective complementary tool for assessing the diversity of wintering waterbirds in lakes,though it is unable to capture the full diversity of waterbird communities.It is crucial to develop sampling strategies that comprehensively monitor species composition and integrate e DNA with traditional survey methods for accurate evaluation of community structure.展开更多
基金funded by the National Natural Science Foundation of China(62273213,62472262,62572287)Natural Science Foundation of Shandong Province(ZR2024MF144)+1 种基金Natural Science Foundation of Shandong Province for Innovation and Development Joint Funds(ZR2022LZH001)Taishan Scholarship Construction Engineering.
文摘Accurately counting dense objects in complex and diverse backgrounds is a significant challenge in computer vision,with applications ranging from crowd counting to various other object counting tasks.To address this,we propose HUANNet(High-Resolution Unified Attention Network),a convolutional neural network designed to capture both local features and rich semantic information through a high-resolution representation learning framework,while optimizing computational distribution across parallel branches.HUANNet introduces three core modules:the High-Resolution Attention Module(HRAM),which enhances feature extraction by optimizing multiresolution feature fusion;the Unified Multi-Scale Attention Module(UMAM),which integrates spatial,channel,and convolutional kernel information through an attention mechanism applied across multiple levels of the network;and the Grid-Assisted Point Matching Module(GPMM),which stabilizes and improves point-to-point matching by leveraging grid-based mechanisms.Extensive experiments show that HUANNet achieves competitive results on the ShanghaiTech Part A/B crowd counting datasets and sets new state-of-the-art performance on dense object counting datasets such as CARPK and XRAY-IECCD,demonstrating the effectiveness and versatility of HUANNet.
基金supported by the National Key R&D Program of China [grant number 2023YFC3008004]。
文摘This study presents a comprehensive evaluation of tropical cyclone(TC)forecast performance in the western North Pacific from 2013 to 2022,based on operational forecasts issued by the China Meteorological Administration.The analysis reveals systematic improvements in both track and intensity forecasts over the decade,with distinct error characteristics observed across various forecast parameters.Track forecast errors have steadily decreased,particularly for longer lead times,while error magnitudes have increased with longer forecast lead times.Intensity forecasts show similar progressive enhancements,with maximum sustained wind speed errors decreasing by 0.26 m/s per year for 120 h forecasts.The study also identifies several key patterns in forecast performance:typhoon-grade or stronger TCs exhibit smaller track errors than week or weaker systems;intensity forecasts systematically overestimate weaker TCs while underestimating stronger systems;and spatial error distributions show greater track inaccuracies near landmasses and regional intensity biases.These findings highlight both the significant advances in TC forecasting capability achieved through improved modeling and observational systems,and the remaining challenges in predicting TC changes and landfall behavior,providing valuable benchmarks for future forecast system development.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia,Grant No.KFU250098.
文摘In this study,an automated multimodal system for detecting,classifying,and dating fruit was developed using a two-stage YOLOv11 pipeline.In the first stage,the YOLOv11 detection model locates individual date fruits in real time by drawing bounding boxes around them.These bounding boxes are subsequently passed to a YOLOv11 classification model,which analyzes cropped images and assigns class labels.An additional counting module automatically tallies the detected fruits,offering a near-instantaneous estimation of quantity.The experimental results suggest high precision and recall for detection,high classification accuracy(across 15 classes),and near-perfect counting in real time.This paper presents a multi-stage pipeline for date fruit detection,classification,and automated counting,employing YOLOv11-based models to achieve high accuracy while maintaining real-time throughput.The results demonstrated that the detection precision exceeded 90%,the classification accuracy approached 92%,and the counting module correlated closely with the manual tallies.These findings confirm the potential of reducing manual labour and enhancing operational efficiency in post-harvesting processes.Future studies will include dataset expansion,user-centric interfaces,and integration with harvesting robotics.
基金the support of the National Natural Science Foundation of China(22575230)。
文摘Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.
文摘Inborn errors of metabolism(IEM)are rare disorders,most are liver-based with liver transplantation(LT)emerging as an effective cure in the pediatric population.LT has been shown to offer a cure or deter disease progression and provide symptomatic improvement in patients with IEM.Each metabolic disorder is unique,with the missing enzyme or transporter protein causing substrate deficiency or toxic byproduct production.Knowledge about the distribution of deficient enzymes,the percentage of enzymes replaced by LT,and the extent of extrahepatic involvement helps anticipate and manage complications in the perioperative period.Most patients have multisystem involvement and can be on complex dietary regimens.Metabolic decompensation can be triggered due to the stress response to surgery,fasting and other unanticipated complications perioperatively.Thus,a multidisciplinary team’s input including those from metabolic specialists is essential to develop disease and patient-specific strategies for the perioperative management of these patients during LT.In this review,we outline the classification of IEM,indications for LT along with potential benefits,basic metabolic defects and their implications,details of extrahepatic involvement and perioperative management strategies for LT in children with some of the commonly presenting IEM,to assist anesthesiologists handling this cohort of patients.
基金supported in part by the TUM University Foundation Fellowshipin part by the German Federal Ministry for Economic Affairs and Energy(BMWi)within the Federal Aeronautical Research Program LuFo V-3 through Project“HOTRUN”(No.20E1720A)。
文摘This study is dedicated to the development of a direct optimal control-based algorithm for trajectory optimization problems that accounts for the closed-loop stability of the trajectory tracking error dynamics already during the optimization.Consequently,the trajectory is designed such that the Linear Time-Varying(LTV)dynamic system,describing the controller’s error dynamics,is stable,while additionally the desired optimality criterion is optimized and all enforced constraints on the trajectory are fulfilled.This is achieved by means of a Lyapunov stability analysis of the LTV dynamics within the optimization problem using a time-dependent,quadratic Lyapunov function candidate.Special care is taken with regard to ensuring the correct definiteness of the ensuing matrices within the Lyapunov stability analysis,specifically considering a numerically stable formulation of these in the numerical optimization.The developed algorithm is applied to a trajectory design problem for which the LTV system is part of the path-following error dynamics,which is required to be stable.The main benefit of the proposed scheme in this context is that the designed trajectory trades-off the required stability and robustness properties of the LTV dynamics with the optimality of the trajectory already at the design phase and thus,does not produce unstable optimal trajectories the system must follow in the real application.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
基金supported by the Key R&D Program of Zhejiang Province(Nos.2023C01166 and 2024SJCZX0046)the Zhejiang Provincial Natural Science Foundation of China(Nos.LDT23E05013E05 and LD24E050009)the Natural Science Foundation of Ningbo(No.2021J150),China.
文摘Accuracy allocation is crucial in the accuracy design of machining tools.Current accuracy allocation methods primarily focus on positional deviation,with little consideration for tool direction deviation.To address this issue,we propose a geometric error cost sensitivity-based accuracy allocation method for five-axis machine tools.A geometric error model consisting of 4l error components is constructed based on homogeneous transformation matrices.Volumetric points with positional and tool direction deviations are randomly sampled to evaluate the accuracy of the machine tool.The sensitivity of each error component at these sampling points is analyzed using the Sobol method.To balance the needs of geometric precision and manufacturing cost,a geometric error cost sensitivity function is developed to estimate the required cost.By allocating error components affecting tool direction deviation first and the remaining components second,this allocation scheme ensures that both deviations meet the requirements.We also perform numerical simulation of a BC-type(B-axis and C-axis type)five-axis machine tool to validate the method.The results show that the new allocation scheme reduces the total geometric error cost by 27.8%compared to a uniform allocation scheme,and yields the same positional and tool direction machining accuracies.
基金National Natural Science Foundation of China(No.12472038)Natural Science Foundation of Jiangsu Province(No.BK20230688)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.22KJB440004)Key Research and Development Program of Xuzhou(No.KC22404)Research Fund for Doctoral Degree Teachers of Jiangsu Normal University of China(No.22XFRS011).
文摘A rock-drilling jumbo is the main piece of tunneling equipment used in the energy and infrastructure industries in various countries.The positioning accuracy of its drilling boom greatly affects tunneling efficiency and section-forming quality of mine roadways and engineering tunnels.In order to improve the drilling-positioning accuracy of a three-boom drilling jumbo,we established a kinematics model of the multi-degree-of-freedom(multi-DOF)multi-boom system,using the improved Denavit-Hartenberg(D-H)method,and obtained the mapping relationship between the end position and the amount of motion of each joint.The error of the inverse kinematics calculation for the drilling boom is estimated by an analytical method and a global search algorithm based on particle swarm optimization(PSO)for a straight blasting hole and an inclined blasting hole.On this basis,we propose a back-propagation(BP)neural network optimized by an improved sparrow search algorithm(ISSA)to predict the positioning error of the drilling booms of a three-boom drilling jumbo.In order to verify the accuracy of the proposed error compensation model,we built an automatic-control test platform for the boom,and carried out a positioning error compensation test on the boom.The results show that the average drilling-positioning error was reduced from 9.79 to 5.92 cm,and the error was reduced by 39.5%.Therefore,the proposed method effectively reduces the positioning error of the drilling boom,and improves the accuracy and efficiency of rock drilling.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
基金Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘In this paper,we develop a multi-scalar auxiliary variables(MSAV)scheme for the Cahn-Hilliard Magnetohydrodynamics system by introducing two scalar auxiliary variables(SAV).This scheme is linear,fully decoupled and unconditionally stable in energy.Subsequently,we provide a detailed implementation procedure for full decoupling.Thus,at each time step,only a series of linear differential equations with constant coefficients need to be solved.To validate the effectiveness of our approach,we conduct an error analysis for this first-order scheme.Finally,some numerical experiments are provided to verify the energy dissipation of the system and the convergence of the proposed approach.
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
文摘Industrial robots are integral to modern manufacturing systems,enabling high precision,high throughput,and flexibility.However,errors in accuracy and repeatability,which arise from a variety of sources such as mechanical wear,calibration issues,and environmental factors,can significantly impact the performance of industrial robots.This paper aims to explore the theoretical modeling of errors in industrial robot systems and propose compensation strategies to enhance their accuracy and repeatability.Key factors contributing to errors,such as kinematic,dynamic,and environmental influences,are discussed in detail.Additionally,the paper explores various compensation techniques,including geometric error compensation,dynamic compensation,and adaptive control approaches.Through the integration of error modeling and compensation methods,industrial robots can achieve improved performance,ensuring higher operational efficiency and product quality.The paper concludes by highlighting the challenges and future research directions for improving the accuracy and repeatability of industrial robots in practical applications.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375018,92148301).
文摘Contour error is the deviation between the actual displacement and reference trajectory,which is directly related to the machining accuracy.Contour error compensation poses substantial challenges because of the time-varying,nonlinear,and strongly coupled characteristics of parallel machining modules.In addition,the time delay in the system reduces the timeliness of the feedback data,thereby making online contour error calculations and compensation particularly difficult.To solve this problem,the generation mechanism of the time delay of the feedback data and contour error is revealed,and a systematic method for the identification of the time-delay parameter based on Beckhoff’s tracking error calculation mechanism is proposed.The temporal alignment between the position commands and feedback data enables the online calculation of the contour error.On this basis,the tracking error of the drive axes(an important factor resulting in end-effector contour errors)is used for the contour error calculation.Considering the ambiguous parameter-setting logic of the servo drive,the servo parameter is calculated in reverse using the steady-state error to obtain the tracking error model of the drive axes.Furthermore,combined with the system time-delay model,an online correction method for the tracking error estimation model is established.To achieve an accurate mapping of the drive-axis tracking error and end-effector contour error,a bounded iterative search method for the nearest contour point and online calculation model for the contour error are respectively established.Finally,an online compensation controller for contour error is designed.Its effectiveness is verified by a machining experiment on a frame workpiece.The machining results show that the contour error reduces from 68μm to 45μm,and the finish machining accuracy increases by 34%.This study provides a feasible method for online compensation of contour error in a system with time delay.
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
文摘Thermal errors in CNC machine tools,particularly those involving the spindle,significantly affect machining accuracy and performance.These errors,caused by temperature fluctuations in the spindle and surrounding components,result in dimensional deviations that can lead to poor part quality and reduced precision in high-speed manufacturing processes.This paper explores thermal error modeling and compensation methods for the spindle of five-axis CNC machine tools.A detailed analysis of the heat generation,transfer mechanisms,and finite element analysis(FEA)is presented to develop accurate thermal error models.Compensation techniques,such as model-based methods,sensor-based methods,real-time compensation algorithms,and hybrid approaches,are critically reviewed.This study also discusses the challenges in real-time compensation and the integration of thermal error compensation with machine tool control systems.The objective is to provide a comprehensive understanding of thermal error phenomena and their compensation strategies,ultimately contributing to the enhancement of machining accuracy in advanced manufacturing applications.
基金supported by National Natural Science Foundation of China(NSFC)(Nos.12475200 and 12275296)Joint Fund of Research utilizing Large-Scale Scientific Facility of the NSFC and CAS(No.U2032114)Institute of High Energy Physics(Chinese Academy of Sciences)Innovative Project on Sciences and Technologies(Nos.E3545BU210 and E25456U210).
文摘The particle identification(PID)of hadrons plays a crucial role in particle physics experiments,especially in flavor physics and jet tagging.The cluster counting method,which measures the number of primary ionizations in gaseous detectors,is a promising breakthrough in PID.However,developing an effective reconstruction algorithm for cluster counting remains challenging.To address this challenge,we propose a cluster counting algorithm based on long short-term memory and dynamic graph convolutional neural networks for the CEPC drift chamber.Experiments on Monte Carlo simulated samples demonstrate that our machine learning-based algorithm surpasses traditional methods.It improves the K/πseparation of PID by 10%,meeting the PID requirements of CEPC.
基金supported by the Natural Science Foundation of China(No.32171264 and No.81974226)the Sichuan Science and Technology Program(2023NSFSC1609)。
文摘According to the World Health Organization(WHO)manual,sperm concentration should be measured using an improved Neubauer hemocytometer,while sperm motility should be measured by manual assessment.However,in China,thousands of laboratories do not use the improved Neubauer hemocytometer or method;instead,the Makler counting chamber is one of the most widely used chambers.To study sources of error that could impact the measurement of the apparent concentration and motility of sperm using the Makler counting chamber and to verify its accuracy for clinical application,67 semen samples from patients attending the Department of Andrology,West China Second University Hospital,Sichuan University(Chengdu,China)between 13 September 2023 and 27 September 2023,were included.Compared with applying the cover glass immediately,delaying the application of the cover glass for 5 s,10 s,and 30 s resulted in average increases in the sperm concentration of 30.3%,74.1%,and 107.5%,respectively(all P<0.0001)and in the progressive motility(PR)of 17.7%,30.8%,and 39.6%,respectively(all P<0.0001).However,when the semen specimens were fixed with formaldehyde,a delay in the application of the cover glass for 5 s,10 s,and 30 s resulted in an average increase in the sperm concentration of 6.7%,10.8%,and 14.6%,respectively,compared with immediate application of the cover glass.The accumulation of motile sperm due to delays in the application of the cover glass is a significant source of error with the Makler counting chamber and should be avoided.
基金funded by the National Key Research and Development Program of China(Award Number:2022YFC3202104)。
文摘Environmental DNA(e DNA)methods have emerged as a promising tool for studying a broad spectrum of biological taxa.However,metabarcoding studies of avian biodiversity using e DNA have received little attention.In this study,we compared waterbird biodiversity derived from e DNA metabarcoding with that obtained from traditional point counting surveys at 23 sites in Tai Lake of eastern China and evaluated the accuracy of e DNA metabarcoding for waterbird community studies.The point counting method recorded a higher total number of waterbird species(22)compared to the e DNA technique(16).While e DNA achieved a 74.5%detection rate for waterbird species and was able to identify a significantly greater number of species(12.48±1.97)at each sampling site than point counting method(6.13±2.69),particularly highlighting several rare and elusive species,it failed to detect some species commonly observed by the point counting method.The alpha diversity analysis revealed no significant differences in waterbird diversity between the e DNA method and the point counting method,except that the e DNA method exhibited lower Pielou evenness.Waterbird e DNA sequencing abundance correlated significantly with species occurrence,whereas Spearman's analysis indicated no significant difference between e DNA sequence abundance and species abundance from the point counting method.e DNA method detected no significant difference in waterbird composition between sampling sites,while the point counting method revealed significant differences.Consequently,e DNA is an effective complementary tool for assessing the diversity of wintering waterbirds in lakes,though it is unable to capture the full diversity of waterbird communities.It is crucial to develop sampling strategies that comprehensively monitor species composition and integrate e DNA with traditional survey methods for accurate evaluation of community structure.