期刊文献+

Cluster counting algorithm for the CEPC drift chamber using LSTM and DGCNN

在线阅读 下载PDF
导出
摘要 The particle identification(PID)of hadrons plays a crucial role in particle physics experiments,especially in flavor physics and jet tagging.The cluster counting method,which measures the number of primary ionizations in gaseous detectors,is a promising breakthrough in PID.However,developing an effective reconstruction algorithm for cluster counting remains challenging.To address this challenge,we propose a cluster counting algorithm based on long short-term memory and dynamic graph convolutional neural networks for the CEPC drift chamber.Experiments on Monte Carlo simulated samples demonstrate that our machine learning-based algorithm surpasses traditional methods.It improves the K/πseparation of PID by 10%,meeting the PID requirements of CEPC.
出处 《Nuclear Science and Techniques》 2025年第7期14-23,共10页 核技术(英文)
基金 supported by National Natural Science Foundation of China(NSFC)(Nos.12475200 and 12275296) Joint Fund of Research utilizing Large-Scale Scientific Facility of the NSFC and CAS(No.U2032114) Institute of High Energy Physics(Chinese Academy of Sciences)Innovative Project on Sciences and Technologies(Nos.E3545BU210 and E25456U210).
  • 相关文献

参考文献2

二级参考文献21

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部