Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized...Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr...Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.展开更多
The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The result...The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.展开更多
The results of the study of the effect of partial substitution of Fe by Mn in the La Fe_(11.2-x)Mn_(x)Co_(0.7)Si_(1.1)system on magnetization,specific heat,magnetostriction and magnetocaloric effect are presented.Dire...The results of the study of the effect of partial substitution of Fe by Mn in the La Fe_(11.2-x)Mn_(x)Co_(0.7)Si_(1.1)system on magnetization,specific heat,magnetostriction and magnetocaloric effect are presented.Direct measurements of the adiabatic temperature change(ΔT_(ad))were carried out in alternating magnetic fields(AMF)using the magnetic field modulation method.Partial substitution of Fe atoms by Mn atoms leads to a shift in the Curie temperature(T_(C))towards lower temperatures without a noticeable deterioration in magnetic properties.A correlation was found between the structural component of the magnetocaloric effect and the stability of the frequency of theΔT_(ad)in the AMFs—an increase in the manganese concentration leads to a decrease in magnetostriction and to a lower dependence ofΔT_(ad)on the frequency of the magnetic field.Estimates of the specific cooling power Q_(C)as a function of the frequency of the AMF showed that the highest value of Q_(C)at f=20 Hz in a magnetic field of 12k Oe is 26.3 W g^(-1)and is observed for the composition with x=0.1.This value is higher than that of Gd,for which,under the same conditions,Q_(C)=21.6 W g^(-1).All the samples studied show stability of the value ofΔT_(ad)without any sign of deterioration of the effect up to 60,000cycles of switching on/off of the magnetic field of 12 k Oe.The discovered frequency and cyclic stability ofΔT_(ad)of the studied samples increase their prospects for application in magnetic cooling technology.展开更多
With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,...With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.展开更多
When deploying Reconfigurable Intelligent Surface(RIS)to improve System Sum-Rate(SSR),the timeliness and accuracy of SSR optimization methods are difficult to achieve simultaneously through a single algorithm.Some alg...When deploying Reconfigurable Intelligent Surface(RIS)to improve System Sum-Rate(SSR),the timeliness and accuracy of SSR optimization methods are difficult to achieve simultaneously through a single algorithm.Some algorithms focus on timeliness,while some focus on accuracy.In this paper,in order to take into account the timeliness and accuracy of the system comprehensively,we construct SSR analysis model of RIS-assisted multiuser downlink communication system and propose several new optimization methods.The goal is to maximize SSR by using the proposed algorithms to jointly optimize power allocation and reflection coefficients.To solve this comprehensive problem,two sets of Alternating Optimization(AO)-based timeliness algorithms and one set of Monotonic Optimization(MO)-based accuracy algorithms are proposed separately to jointly optimize system performance.First,the Water-Filling(WF)-based and penalty-based low complexity algorithms are developed to optimize power allocation and reflection coefficients respectively.To improve the reality of the calculation,penalty-based algorithm cleverly considers residual noise that is difficult to calculate.Then,for further improve the timeliness,a new Successive Convex Approximation(SCA)-based low complexity algorithm is designed to further optimize reflection coefficients and its convergence is proved.Third,in order to verify the effectiveness of the proposed timeliness algorithms,we further propose MO-based accuracy algorithms,in which,the Polyblock Outer Approximation(POA)algorithm,the Semidefinite Relaxation(SDR)method,and the bisection search algorithm are combined in a novel way.Numerical results confirm the timeliness of AO-based algorithms and the accuracy of MO-based algorithms.They supervise and complement each other.展开更多
The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique cha...The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique challenges when inertial loads become dominant:non-monotonous behavior of the objective function,possible unconstrained characterization of the optimal solution,and parasitic effects.Herein,an improved Guide-Weight approach is introduced,which effectively addresses the structural topology optimization problem when subjected to inertial loads.Smooth and fast convergence of the compliance is achieved by the approach,while also maintaining the effectiveness of the volume constraints.The rational approximation of material properties model and smooth design are utilized to guarantee clear boundaries of the final structure,facilitating its seamless integration into manufacturing processes.The framework provided by the alternating active-phase algorithm is employed to decompose the multi-material topological problem under inertial loading into a set of sub-problems.The optimization of multi-material under inertial loads is accomplished through the effective resolution of these sub-problems using the improved Guide-Weight method.The effectiveness of the proposed approach is demonstrated through numerical examples involving two-phase and multi-phase materials.展开更多
A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear as...A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear astrophysics.It consisted of a well-type HPGe detector surrounded by optimized multi-layer shielding,which reduced the laboratory background counting rate by 99.5%and enabled a sensitivity edge as low as 0.044 Bq for the 477.6 KeV γ line of ^(7)Be.The near 4π geometry of the HPGe detector introduces a severe true coincidence summing(TCS)effect along with its high detection efficiency.To determine the intrinsic detection efficiency and correct for the TCS effect,a Monte Carlo simulation method was developed with the Geant4 toolkit.The detector model was optimized by matching the simulated full energy peak(FEP)statistics with those of a ^(137)Cs monoenergetic source and calibrated ^(55,57,58)Co sources produced by low-energy proton beam bombardment of natural iron.The intrinsic detection efficiency curve was obtained,and an algorithm for the correction of the TCS effect was programmed using decay data from the ENSDF library and Nuclear Wallet Cards.The GNAS fulfills the requirements of the ongoing activation measurement of proton-and alpha-induced reactions in nuclear astrophysics on the ground and at the Jinping Underground Nuclear Astrophysics(JUNA)facility.展开更多
BACKGROUND Working memory serves as a fundamental cognitive function that substantially impacts performance in various cognitive tasks.Extensive neurophysiological research has established that theta oscillations(4-8 ...BACKGROUND Working memory serves as a fundamental cognitive function that substantially impacts performance in various cognitive tasks.Extensive neurophysiological research has established that theta oscillations(4-8 Hz)play an essential role in supporting working memory operations.Theta-band transcranial alternating current stimulation(tACS)offers a potential mechanism for working memory enhancement through direct modulation of these fundamental neural oscillations.Nevertheless,current empirical evidence shows substantial variability in the observed effects of theta-tACS across studies.AIM To conduct a systematic review and meta-analysis evaluating the effects of thetatACS on working memory performance in healthy adults.METHODS A systematic literature search was performed on PubMed,EMBASE,and Web of Science up to March 10,2025.Effect sizes were computed using Hedges’g with 95%confidence intervals(CIs),with separate meta-analyses for all included studies and for distinct working memory paradigms[n-back and delayed matchto-sample(DMTS)tasks]to examine potential task-specific effects.Subgroup analyses and meta-regression were performed to evaluate the influence of key moderating variables.RESULTS The systematic review included 21 studies(67 effect sizes).Initial meta-analysis showed theta-tACS moderately improved working memory(Hedges’g=0.405,95%CI:0.212-0.598).However,this effect became nonsignificant after correcting for publication bias(trim-and-fill adjusted Hedges’g=0.082,95%CI:-0.052 to 0.217).Task-specific analyses revealed significant benefits in n-back tasks(Hedges’g=0.463,95%CI:0.193-0.733)but not in DMTS tasks(Hedges’g=0.257,95%CI:-0.186 to 0.553).Moderator analyses showed that performance in n-back tasks was influenced by stimulation frequency(P=0.001),concurrent status(P=0.014),task modality(P=0.005),and duration(P=0.013),whereas only the region of targeted stimulation(P=0.012)moderated DMTS tasks.CONCLUSION Theta-tACS enhances working memory in healthy adults,with effects modulated by the task type and protocol parameters,offering dual implications for cognitive enhancement and clinical interventions.展开更多
An alternating magnetic field(AMF)was introduced into the narrow gap laser-arc hybrid welding process for 2205 duplex stainless steel thick plates.The corrosion performance of the welded joints was evaluated through e...An alternating magnetic field(AMF)was introduced into the narrow gap laser-arc hybrid welding process for 2205 duplex stainless steel thick plates.The corrosion performance of the welded joints was evaluated through electrochemical studies.The results revealed that joints welded with the application of AMF had a lower corrosion current density compared to those welded without an external AMF.Additionally,these joints showed higher pitting potential and polarization resistance.Microscopic electrochemical analysis indicated that joints subjected to AMF exhibited minimal cathodic current in simulated seawater,with only slight fluctuations in the anodic current peak.Overall,the corrosion levels on the joint surfaces were relatively low.After 4 h of immersion in the corrosive medium,the average impedance of joints exposed to AMF increased by 60.7%compared to those not influenced by a magnetic field.These findings suggest that applying AMF during the narrow gap laser-arc hybrid welding process can significantly improve the corrosion resistance of duplex stainless steel welded joints,reducing their susceptibility to stress corrosion in seawater-like environments.展开更多
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金Supported in part by NSFC(Nos.12401011,12201214)National Key Research and Development Program of China(No.2021YFA1000700)+3 种基金Shaanxi Fundamental Science Research Project for Mathematics and Physics(No.23JSQ053)Science and Technology Program for Youth New Star of Shaanxi Province(No.2025ZC-KJXX-29)Natural Science Basic Research Program of Shaanxi Province(No.2025JC-YBQN-091)Scientific Research Foundation for Young Talents of WNU(No.2024XJ-QNRC-01)。
文摘Let f,g and h be three distinct primitive holomorphic cusp forms of even integral weights k_(1),k_(2)and k_(3)for the full modular groupΓ=SL(2,Z),and denote byλ_(f)(n),λ_(g)(n),λ_(h)(n)the corresponding normalized Fourier coefficients,respectively.In this paper,we investigate the correlations of triple sums associated to these Fourier coefficientsλ_(f)(n),λ_(g)(n),λ_(h)(n)over certain polynomials,and obtain some power-saving asymptotic estimates which beat the trivial bounds.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金the National Natural Science Foundation of China(No.61861023)the Yunnan Fundamental Research Project(No.202301AT070452)。
文摘Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy.
基金financially supported by the National Natural Science Foundation of China(No.22161040)Natural Science Foundation of Gansu(No.24JRRA125)Science Research Project of Northwest Normal University(No.NWNU-LKZD2021-3)。
文摘The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.
基金financially supported by Russian Science Foundation(No.24-43-00156,https://rscf.ru/en/project/24-43-00156/)the National Natural Science Foundation of China(No.52171169)the State Key Laboratory for Advanced Metals and Materials(No.2023-ZD01)。
文摘The results of the study of the effect of partial substitution of Fe by Mn in the La Fe_(11.2-x)Mn_(x)Co_(0.7)Si_(1.1)system on magnetization,specific heat,magnetostriction and magnetocaloric effect are presented.Direct measurements of the adiabatic temperature change(ΔT_(ad))were carried out in alternating magnetic fields(AMF)using the magnetic field modulation method.Partial substitution of Fe atoms by Mn atoms leads to a shift in the Curie temperature(T_(C))towards lower temperatures without a noticeable deterioration in magnetic properties.A correlation was found between the structural component of the magnetocaloric effect and the stability of the frequency of theΔT_(ad)in the AMFs—an increase in the manganese concentration leads to a decrease in magnetostriction and to a lower dependence ofΔT_(ad)on the frequency of the magnetic field.Estimates of the specific cooling power Q_(C)as a function of the frequency of the AMF showed that the highest value of Q_(C)at f=20 Hz in a magnetic field of 12k Oe is 26.3 W g^(-1)and is observed for the composition with x=0.1.This value is higher than that of Gd,for which,under the same conditions,Q_(C)=21.6 W g^(-1).All the samples studied show stability of the value ofΔT_(ad)without any sign of deterioration of the effect up to 60,000cycles of switching on/off of the magnetic field of 12 k Oe.The discovered frequency and cyclic stability ofΔT_(ad)of the studied samples increase their prospects for application in magnetic cooling technology.
基金supported by the National Natural Science Foundation of China(Nos.22005277,52474256 and 52074247)the Natural Science Foundation of Hubei Province(No.2024AFB662)+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Province,Opening Foundation of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.oic-202401012)the Fundamental Research Funds for National Universities,China University of Geosciences(No.2024XLA93).
文摘With the continuous advancement of electronic devices,flexible thin films with both thermal manage-ment functions and excellent electromagnetic interference(EMI)shielding properties have received much attention.Hence,inspired by Janus,a CNF/MXene/ZnFe2O4@PANI composite film with an asymmetric gradient alternating structure was successfully prepared by adjusting the filler content of the conduc-tive and magnetic layers using a vacuum-assisted filtration method.Benefiting from the magnetic reso-nance and hysteresis loss of ZnFe2O4@PANI,conductive loss and dipole polarization of MXene,as well as the exclusive"absorption-reflection-reabsorption"shielding feature in the alternating multilayered films,CM&CZFP-4 G film has superior EMI shielding performance,with an EMI SE of up to 45.75 dB and shield-ing effectiveness of 99.99%.Surprisingly,the composite film maintains reliable EMI shielding properties even after prolonged erosion in harsh environments such as high/low temperatures,high humidity,acids and alkalis.Furthermore,the CM&CZFP-4 G responded quickly within about 50 s and reached a maximum steady-state temperature of 235.8℃ at an applied voltage of 9.0 V,indicating the obtained film acquired outstanding and controllable Joule heating performance.This result was attributed to the homogeneous dispersion of MXene to build up a conductive network and endow the CNF/MXene with high conduc-tivity.Meanwhile,the fire resistance of CM&CZFP-4 G was significantly improved compared to pure CNF,which guaranteed fire safety during its application.Additionally,contributed by long fiber entanglement of CNF,extensive hydrogen-bonding interactions and multilayer structural design,the CM&CZFP-4 G film exhibits excellent mechanical characteristics,with the tensile strength and fracture strain of 27.74 MPa and 6.21%,separately.This work offers a creative avenue to prepare multifunctional composite films with electromagnetic shielding and Joule heating for various application environments.
基金supported in part by Natural Science Foundation of China(92367102)in part by National Science and Technology Major Project(2024ZD1300400).
文摘When deploying Reconfigurable Intelligent Surface(RIS)to improve System Sum-Rate(SSR),the timeliness and accuracy of SSR optimization methods are difficult to achieve simultaneously through a single algorithm.Some algorithms focus on timeliness,while some focus on accuracy.In this paper,in order to take into account the timeliness and accuracy of the system comprehensively,we construct SSR analysis model of RIS-assisted multiuser downlink communication system and propose several new optimization methods.The goal is to maximize SSR by using the proposed algorithms to jointly optimize power allocation and reflection coefficients.To solve this comprehensive problem,two sets of Alternating Optimization(AO)-based timeliness algorithms and one set of Monotonic Optimization(MO)-based accuracy algorithms are proposed separately to jointly optimize system performance.First,the Water-Filling(WF)-based and penalty-based low complexity algorithms are developed to optimize power allocation and reflection coefficients respectively.To improve the reality of the calculation,penalty-based algorithm cleverly considers residual noise that is difficult to calculate.Then,for further improve the timeliness,a new Successive Convex Approximation(SCA)-based low complexity algorithm is designed to further optimize reflection coefficients and its convergence is proved.Third,in order to verify the effectiveness of the proposed timeliness algorithms,we further propose MO-based accuracy algorithms,in which,the Polyblock Outer Approximation(POA)algorithm,the Semidefinite Relaxation(SDR)method,and the bisection search algorithm are combined in a novel way.Numerical results confirm the timeliness of AO-based algorithms and the accuracy of MO-based algorithms.They supervise and complement each other.
基金supported by the National Natural Science Foundation of China(Grant No.52172356)the Hunan Provincial Natural Science Foundation of China(Grant No.2022JJ10012).
文摘The application of multi-material topology optimization affords greater design flexibility compared to traditional single-material methods.However,density-based topology optimization methods encounter three unique challenges when inertial loads become dominant:non-monotonous behavior of the objective function,possible unconstrained characterization of the optimal solution,and parasitic effects.Herein,an improved Guide-Weight approach is introduced,which effectively addresses the structural topology optimization problem when subjected to inertial loads.Smooth and fast convergence of the compliance is achieved by the approach,while also maintaining the effectiveness of the volume constraints.The rational approximation of material properties model and smooth design are utilized to guarantee clear boundaries of the final structure,facilitating its seamless integration into manufacturing processes.The framework provided by the alternating active-phase algorithm is employed to decompose the multi-material topological problem under inertial loading into a set of sub-problems.The optimization of multi-material under inertial loads is accomplished through the effective resolution of these sub-problems using the improved Guide-Weight method.The effectiveness of the proposed approach is demonstrated through numerical examples involving two-phase and multi-phase materials.
基金supported by the National Key Research and Development Project(No.2022YFA1602301)the National Natural Science Foundation of China(Nos.U2267205 and 12275361)the Continuous-Support Basic Scientific Research Project.
文摘A low-background γ spectrometer named the Gamma spectrometer for Nuclear Activation Studies(GNAS)was developed to detect scarce γ radioactivity,with a special focus on conducting activation experiments in nuclear astrophysics.It consisted of a well-type HPGe detector surrounded by optimized multi-layer shielding,which reduced the laboratory background counting rate by 99.5%and enabled a sensitivity edge as low as 0.044 Bq for the 477.6 KeV γ line of ^(7)Be.The near 4π geometry of the HPGe detector introduces a severe true coincidence summing(TCS)effect along with its high detection efficiency.To determine the intrinsic detection efficiency and correct for the TCS effect,a Monte Carlo simulation method was developed with the Geant4 toolkit.The detector model was optimized by matching the simulated full energy peak(FEP)statistics with those of a ^(137)Cs monoenergetic source and calibrated ^(55,57,58)Co sources produced by low-energy proton beam bombardment of natural iron.The intrinsic detection efficiency curve was obtained,and an algorithm for the correction of the TCS effect was programmed using decay data from the ENSDF library and Nuclear Wallet Cards.The GNAS fulfills the requirements of the ongoing activation measurement of proton-and alpha-induced reactions in nuclear astrophysics on the ground and at the Jinping Underground Nuclear Astrophysics(JUNA)facility.
基金Supported by Shanghai Municipal Health Commission’s Special Clinical Research Project for the Hygiene Industry,No.20244Y0041Youth Initiation Fund of Naval Medical University,No.2023QN028 and No.2023QN030。
文摘BACKGROUND Working memory serves as a fundamental cognitive function that substantially impacts performance in various cognitive tasks.Extensive neurophysiological research has established that theta oscillations(4-8 Hz)play an essential role in supporting working memory operations.Theta-band transcranial alternating current stimulation(tACS)offers a potential mechanism for working memory enhancement through direct modulation of these fundamental neural oscillations.Nevertheless,current empirical evidence shows substantial variability in the observed effects of theta-tACS across studies.AIM To conduct a systematic review and meta-analysis evaluating the effects of thetatACS on working memory performance in healthy adults.METHODS A systematic literature search was performed on PubMed,EMBASE,and Web of Science up to March 10,2025.Effect sizes were computed using Hedges’g with 95%confidence intervals(CIs),with separate meta-analyses for all included studies and for distinct working memory paradigms[n-back and delayed matchto-sample(DMTS)tasks]to examine potential task-specific effects.Subgroup analyses and meta-regression were performed to evaluate the influence of key moderating variables.RESULTS The systematic review included 21 studies(67 effect sizes).Initial meta-analysis showed theta-tACS moderately improved working memory(Hedges’g=0.405,95%CI:0.212-0.598).However,this effect became nonsignificant after correcting for publication bias(trim-and-fill adjusted Hedges’g=0.082,95%CI:-0.052 to 0.217).Task-specific analyses revealed significant benefits in n-back tasks(Hedges’g=0.463,95%CI:0.193-0.733)but not in DMTS tasks(Hedges’g=0.257,95%CI:-0.186 to 0.553).Moderator analyses showed that performance in n-back tasks was influenced by stimulation frequency(P=0.001),concurrent status(P=0.014),task modality(P=0.005),and duration(P=0.013),whereas only the region of targeted stimulation(P=0.012)moderated DMTS tasks.CONCLUSION Theta-tACS enhances working memory in healthy adults,with effects modulated by the task type and protocol parameters,offering dual implications for cognitive enhancement and clinical interventions.
基金supported by the National Natural Science Foundation of China(No.52265054)the Inner Mongolia Autonomous Region Natural Science Foundation Project(No.2022ZD03)+3 种基金the Inner Mongolia Autonomous Region Science and Technology Plan Project(No.2020GG0313)the Inner Mongolia Autonomous Region Natural Science Foundation Doctoral Fund Project,(No.2021BS05016)the Construction project of integrated research and development platform for key technologies in the development and processing of new nonferrous metal materials(No.RZ2300001971)the Basic Research Business Fee Project for Autonomous Region Directly Affiliated Universities(Nos.JY20220199 and JY20220028).
文摘An alternating magnetic field(AMF)was introduced into the narrow gap laser-arc hybrid welding process for 2205 duplex stainless steel thick plates.The corrosion performance of the welded joints was evaluated through electrochemical studies.The results revealed that joints welded with the application of AMF had a lower corrosion current density compared to those welded without an external AMF.Additionally,these joints showed higher pitting potential and polarization resistance.Microscopic electrochemical analysis indicated that joints subjected to AMF exhibited minimal cathodic current in simulated seawater,with only slight fluctuations in the anodic current peak.Overall,the corrosion levels on the joint surfaces were relatively low.After 4 h of immersion in the corrosive medium,the average impedance of joints exposed to AMF increased by 60.7%compared to those not influenced by a magnetic field.These findings suggest that applying AMF during the narrow gap laser-arc hybrid welding process can significantly improve the corrosion resistance of duplex stainless steel welded joints,reducing their susceptibility to stress corrosion in seawater-like environments.