期刊文献+
共找到50,263篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing wheat tolerance to salinity using wolfberry-derived carbon dots
1
作者 Jiahao Liu Xiaolei Cao +7 位作者 Tingyong Mao Qinglin Wen Dan Zhang Linfeng Bao Desheng Wang Wei Sang Sifeng Zhao Yunlong Zhai 《Journal of Integrative Agriculture》 2025年第9期3689-3692,共4页
Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)w... Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)were synthesized and applied as a nano-primer to enhance wheat salt tolerance by maintaining reactive oxygen species levels through early oxidative stress conditioning. 展开更多
关键词 enhance wheat salt tolerance SALINITY maintaining reactive oxygen species levels enhancing plant salt tolerance wheat oxidative stress conditioning tolerance carbon dots
在线阅读 下载PDF
Regulation of tillering and panicle branching in rice and wheat 被引量:1
2
作者 Ning Zhang Yuhao Liu +1 位作者 Songtao Gui Yonghong Wang 《Journal of Genetics and Genomics》 2025年第7期869-886,共18页
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicl... Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity. 展开更多
关键词 RICE wheat Crop architecture TILLERING Panicle branching
原文传递
An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting 被引量:1
3
作者 Anmin Zhang Zihong Li +7 位作者 Qirui Zhou Jiawen Zhao Yan Zhao Mengting Zhao Shangyu Ma Yonghui Fan Zhenglai Huang Wenjing Zhang 《Journal of Integrative Agriculture》 2025年第1期114-131,共18页
Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of w... Low temperature(LT)in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.These included morphological observation,measurements of starch synthase activity,and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.Additionally,proteomic analysis was performed using tandem mass tags(TMT).Results showed that the plumpness of wheat grains decreased after LT stress.Moreover,the activities of sucrose synthase(SuS,EC 2.4.1.13)and ADP-glucose pyrophosphorylase(AGPase,EC 2.7.7.27)exhibited a significant reduction,leading to a significant reduction in the contents of amylose and amylopectin.A total of 509 differentially expressed proteins(DEPs)were identified by proteomics analysis.The Gene Ontology(GO)enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions,and the up-regulated seed storage protein(ssP)played an active role in the response of grains to LT stress and subsequent damage.The Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase(SPS),glucose-1-phosphate adenylyltransferase(glgC),andβ-fructofuranosidase(FFase)in sucrose and starch metabolic pathways,thus affecting the synthesis of grain starch.In addition,many heat shock proteins(HsPs)were found in the protein processing in endoplasmic reticulum pathways,which can resist some damage caused by LT stress.These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield developmentafterexposuretoLTstress inspring. 展开更多
关键词 low temperature at booting wheat GRAIN starch synthesis PROTEOMICS
在线阅读 下载PDF
Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat 被引量:1
4
作者 Qing Li Zhuangzhuang Sun +11 位作者 Zihan Jing Xiao Wang Chuan Zhong Wenliang Wan Maguje Masa Malko Linfeng Xu Zhaofeng Li Qin Zhou Jian Cai Yingxin Zhong Mei Huang Dong Jiang 《Journal of Integrative Agriculture》 2025年第8期2902-2919,共18页
Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing p... Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios. 展开更多
关键词 wheat drought priming drought tolerance RNA-Seq gene expression pattern
在线阅读 下载PDF
Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China 被引量:1
5
作者 Jinpeng Li Siqi Wang +6 位作者 Zhongwei Li Kaiyi Xing Xuefeng Tao Zhimin Wang Yinghua Zhang Chunsheng Yao Jincai Li 《Journal of Integrative Agriculture》 2025年第8期2974-2988,共15页
Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed so... Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed sowing on the GY and WUE are unclear. Therefore, a two-year field experiment was conducted during the 2021–2023 winter wheat growing seasons with a total six treatments: rain-fed(RF), conventional irrigation(CI) and micro-sprinkler irrigation(MI), as well as topsoil compaction after seed sowing under these three irrigation methods(RFC, CIC, and MIC). The results in the two years indicated that MI significantly increased GY compared to CI and RF, by averages of 17.9 and 42.1%, respectively. The increase in GY of MI was due to its significant increases in the number of spikes, kernels per spike, and grain weight. The chlorophyll concentration in flag leaves of MI after the anthesis stage maintained higher levels than with CI and RF, and was the lowest in RF. This was due to the dramatically enhanced catalase and peroxidase activities and lower malondialdehyde content under MI. Compared with RF and CI, MI significantly promoted dry matter remobilization and production after anthesis, as well as its contribution to GY. In addition, MI significantly boosted root growth, and root activity during the grain-filling stage was remarkably enhanced compared to CI and RF. In 2021–2022, there was no significant difference in WUE between MI and RF, but the WUE of RF was significantly lower than that of MI in 2022–2023. However, the WUE in MI was significantly improved compared to CI, and it increased by averages of 15.1 and 17.6% for the two years. Topsoil compaction significantly increased GY and WUE under rain-fed conditions due to improved spike numbers and dry matter production. Overall, topsoil compaction is advisable for enhancing GY and WUE in rain-fed conditions, whereas micro-sprinkler irrigation can be adopted to simultaneously achieve high GY and WUE in the HP. 展开更多
关键词 winter wheat MICRO-SPRINKLER grain yield root distribution water utilization
在线阅读 下载PDF
Development and identification of wheat-Psathyrostachys huashanica 7NsS small segment translocation lines with early heading date gene Ehd-7Ns 被引量:1
6
作者 Binwen Tan Jing Gao +13 位作者 Zhijun Yao Wei Zhu Lili Xu Yiran Cheng Yi Wang Jian Zeng Xing Fan Lina Sha Haiqin Zhang Peng Qin Yinghui Li Yonghong Zhou Dandan Wu Houyang Kang 《The Crop Journal》 2025年第4期1186-1196,共11页
Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashan... Psathyrostachys huashanica Keng ex P.C.Kuo(2n=2x=14,NsNs),a wild relative of wheat,represents a valuable germplasm resource for genetic improvement of wheat.We previously confirmed that a chromosome 7Ns from P.huashanica carries genes that accelerate heading and maturity in wheat.Here,we developed three small segment translocation lines(T7NsS-2BL 2BS,T7NsS-1AS 1AL#1,and T7NsS-1AS 1AL#2)along with one additional small segment translocation line(T7NsS-7BS 7BL)through^(60)Co-γ irradiation,identified using genomic in situ hybridization(GISH),fluorescence in situ hybridization(FISH),and liquid chip array analyses.Our findings demonstrated that chromosome 7NsS contained a major early heading date gene,tentatively designated Ehd-7Ns,which was mapped to an approximate31.45 Mb region,corresponding to the short arm of wheat chromosome 7A(IWGSC RefSeq v1.0).The T7NsS-1AS 1AL#2 line exhibited no significant yield penalty and possessed superior agronomic traits relative to the other translocation lines in the field,making it a promising pre-breeding donor for breeding early maturing wheat.Furthermore,21 specific Kompetitive Allele Specific PCR(KASP)markers were developed based on transcriptome data,enabling effective tracing of alien chromosomal segments carrying this source of Ehd-7Ns in marker-assisted breeding.Collectively,these newly developed translocation lines and specific KASP markers will facilitate the transfer and utilization of favorable genes from P.huashanica chromosome 7Ns in future wheat breeding programs. 展开更多
关键词 Early maturity KASP markers Marker assisted selection wheat breeding
在线阅读 下载PDF
Coupling Multi-Source Satellite Remote Sensing and Meteorological Data to Discriminate Yellow Rust and Fusarium Head Blight in Winter Wheat 被引量:1
7
作者 Qi Sheng Huiqin Ma +4 位作者 Jingcheng Zhang Zhiqin Gui Wenjiang Huang Dongmei Chen Bo Wang 《Phyton-International Journal of Experimental Botany》 2025年第2期421-440,共20页
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ... Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control. 展开更多
关键词 Winter wheat yellow rust(YR) fusarium head blight(FHB) DISCRIMINATION remote sensing and meteorology
在线阅读 下载PDF
Predicting the Yield Loss of Winter Wheat Due to Drought in the Llano Estacado Region of the United States Based on the Cultivar-Specific Sensitivity to Drought
8
作者 Prem Woli Gerald R. Smith +1 位作者 Charles R. Long Francis M. Rouquette Jr. 《Agricultural Sciences》 2025年第1期13-30,共18页
In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier clim... In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier climate in the future. Predicting the yield loss due to an anticipated drought is crucial for wheat growers. A reliable way for predicting the drought-induced yield loss is to use a plant physiology-based drought index, such as Agricultural Reference Index for Drought (ARID). Since different wheat cultivars exhibit varying levels of sensitivity to water stress, the impact of drought could be different on the cultivars belonging to different drought sensitivity groups. The objective of this study was to develop the cultivar drought sensitivity (CDS) group-specific, ARID-based models for predicting the drought-induced yield loss of winter wheat in the Llano Estacado region in the southern United States by accounting for the phenological phase-specific sensitivity to drought. For the study, the historical (1947-2021) winter wheat grain yield and daily weather data of two locations in the region (Bushland, TX and Clovis, NM) were used. The logical values of the drought sensitivity parameters of the yield models, especially for the moderately-sensitive and highly-sensitive CDS groups, indicated that the yield models reflected the phenomenon of water stress decreasing the winter wheat yields in this region satisfactorily. The reasonable values of the Nash-Sutcliffe Index (0.65 and 0.72), the Willmott Index (0.88 and 0.92), and the percentage error (23 and 22) for the moderately-sensitive and highly-sensitive CDS groups, respectively, indicated that the yield models for these groups performed reasonably well. These models could be useful for predicting the drought-induced yield losses and scheduling irrigation allocation based on the phenological phase-specific drought sensitivity as influenced by cultivar genotype. 展开更多
关键词 ARID CULTIVAR DROUGHT Model Phase Prediction SEMI-ARID Stage wheat Yield
在线阅读 下载PDF
Morpho-Physiological Indices for Identification of Heat Tolerant Wheat Genotypes(Triticum aestivum L.)at Seedling Stage
9
作者 S.Y.Labonno M.S.Raihan +1 位作者 M.Mohi-Ud-Din A.K.M.Aminul Islam 《Phyton-International Journal of Experimental Botany》 2025年第5期1545-1563,共19页
Morpho-physiological evaluation of a crop’s genetic resources is necessary to find possible genotypes to include in breeding initiatives.The objective of this study was to identify heat-tolerant wheat genotypes among... Morpho-physiological evaluation of a crop’s genetic resources is necessary to find possible genotypes to include in breeding initiatives.The objective of this study was to identify heat-tolerant wheat genotypes among 36 mutant lines using morpho-physiological indices.Seedlings of mutant lines and check varieties were grown under both normal(control)and heat-stress conditions in growth chambers.Data were recorded on root-shoot parameters(length,fresh weight,dry weight,and ratio),relative water content(RWC),stability of cell membrane,pigment content,and chlorophyll fluorescence.Two-way analysis of variance showed significant(p<0.01,p<0.001)variation among 15 morpho-physiological features in both growing conditions.Correlation studies showed that pigment-specific indices(total chl,chl a,chl b,carotenoid,Fv/Fm—chlorophyll fluorescence)had significant positive correlations with rootshoot fresh weight(RFW,SFW)and root-shoot dry weight(RDW,SDW),and negative association with relative water content,stability of cell membrane at both conditions.Hierarchical cluster analysis revealed three primary clusters where cluster III(18 genotypes)showed minimal changes in studied characters than cluster I(11 genotypes)and cluster II(13 genotypes).Results obtained from this study revealed that the identified heat-sensitive(30-2 SSH)and heat-tolerant genotypes(27-2(4),29-2(2),and 30-2 SSH)of wheat might provide useful breeding materials for enhancing wheat yield even more in this period of uncertain climate change. 展开更多
关键词 wheat RWC CTD CMS physiological indicators heat tolerance
在线阅读 下载PDF
Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling
10
作者 Liulong Li Zhiqiang Mao +5 位作者 Pei Wang Jian Cai Qin Zhou Yingxin Zhong Dong Jiang Xiao Wang 《Journal of Integrative Agriculture》 2025年第8期2888-2901,共14页
The impacts of drought stress on crop yield and quality are substantial. Drought priming during the early growth stage of plants has been shown to improve tolerance to drought stress during the reproductive stage, alt... The impacts of drought stress on crop yield and quality are substantial. Drought priming during the early growth stage of plants has been shown to improve tolerance to drought stress during the reproductive stage, although its effects on grain quality remain elusive. This study investigated the influence of drought priming on starch and protein levels in grains under drought stress during grain filling. Our results revealed that drought stress leads to a reduction in the contents of starch and its constituents, while simultaneously increasing glutenin macropolymers and protein fractions. Notably, drought primed plants under drought stress(PD) exhibited mitigated declines in the contents of starch and its components, leading to improvements in starch swelling power and pasting properties. In addition, PD resulted in a slight increase in the protein fractions, limiting the overall rise in total protein content compared to drought stress alone. The results of our study underscore the efficacy of drought priming as a strategy to counteract the negative effects of drought stress on grain quality, particularly by minimizing starch losses and restraining protein content elevation. 展开更多
关键词 wheat drought priming STARCH protein quality amino acid
在线阅读 下载PDF
Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones
11
作者 Ziqiang Che Shuting Bie +4 位作者 Rongrong Wang Yilin Ma Yaoyuan Zhang Fangfang He Guiying Jiang 《Journal of Integrative Agriculture》 2025年第8期2954-2973,共20页
Drought is one of the important stress factors affecting the growth and development processes of wheat in China's arid zones, which severely limits the yield. This study examined the impact of deficit irrigation o... Drought is one of the important stress factors affecting the growth and development processes of wheat in China's arid zones, which severely limits the yield. This study examined the impact of deficit irrigation on the flag leaf protection system and yield of drip-irrigated spring wheat during the growth stages in arid zones. In addition, this study aimed to determine the optimal water supply mode for efficient production under drip irrigation conditions and to provide technical support for water-saving and high-yield cultivation of drip-irrigated wheat. The experiment was conducted with a split plot design using the water-sensitive variety Xinchun 22(XC22) and the drought-tolerant variety Xinchun 6(XC6) as the main plots, while a fully irrigated control(CK, 75–80% FC, where FC is field water holding capacity), mild deficit(T1, 60–65% FC) and moderate deficit(T2, 45–50% FC) at the tillering stage, and mild deficit(J1, 60–65% FC) and moderate deficit(J2, 45–50% FC) at the jointing stage were used as the subplots. Systematic studies were conducted on the regulatory effects of deficit irrigation during the tillering and jointing stages on protective substances, membrane lipid metabolism, endogenous hormones in the flag leaf, and yield of spring wheat. Compared with treatments T2 and J2, treatments T1 and J1 were beneficial for increasing the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT), the levels of proline(Pro), indole-3-acetic acid(IAA), and zeatin riboside(ZR), and the ratios IAA/abscisic acid(ABA), ZR/ABA, IAA/ZR, and(IAA+ZR)/ABA, while reducing the levels of hydrogen peroxide(H2O2), superoxide anion radicals(O2–·), malondialdehyde(MDA), phosphatidic acid(PA), free fatty acids(FFA), ABA, phospholipase D(PLD), and lipoxygenase(LOX), alleviating flag leaf senescence, and increasing yield. Under treatment T1, the SOD, POD, CAT, and Pro levels of flag leaves in XC6 were 11.14, 8.08, 12.98, and 3.66% higher than those of treatment CK, and under treatment J1, they were 6.43, 4.49, 7.36, and 2.50% higher than those of treatment CK. Under treatment T1 in XC6, the IAA, ZR level of the flag leaf, spike number, grains per spike, 1,000-grain weight and yield were 10.50, 5.79, 3.10, 8.84, 3.78, and 10.52% higher than those of treatment CK, and under treatment J1, they were 5.36, 3.94, 2.40, 3.72, 1.37, and 4.46% higher than those of treatment CK. Compared with XC22, XC6 was more conducive to the improvement of flag leaf protective substances, IAA, ZR, dry matter weight, yield components and yield. The correlation analysis showed significant positive correlations between IAA and ZR with SOD, POD, CAT, proline, and yield. IAA and ZR promoted the enhancement of protective enzyme activities, thereby clearing reactive oxygen species to cope with the oxidative stress caused by drought and achieve the effect of delaying senescence. Principal component analysis showed that yield components and dry matter weight, had direct effects on yield. Mild deficiency during the tillering stage without water stress in other stages could effectively optimize yield components, not only achieving high yield while increasing protective substances, but also reducing the reactive oxygen species content. This strategy can be recommended as a water-saving and high-yield production mode for drip irrigation of spring wheat in Xinjiang, China. 展开更多
关键词 spring wheat SENESCENCE protection system endogenous hormones YIELD
在线阅读 下载PDF
Humic Acid Mediates Drought Tolerance in Wheat through the Modulation of Morphophysiological Traits, Leading to Improve the Grain Yield in Wheat
12
作者 Dristy Roy MdZakarya Ibne Sayed +7 位作者 Durjay Mondal Banosree Saha Bandhan Md.Maniruzzaman Bahadur Md.Rabiul Islam Ahmed Gaber MdParvez Kabir Akbar Hossain Subrota Kumer Pramanik 《Phyton-International Journal of Experimental Botany》 2025年第3期763-779,共17页
The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising appr... The increasing frequency and intensity of drought caused by climate change necessitate the implementation of effective ways to increase the ability of wheat to withstand drought, with humic acid being a promising approach. Therefore, a pot experiment was conducted to determine the efficacy of exogenous humic acid on wheat under water deficit stress via a completely randomized design (CRD) with three replications. The impacts of four growing conditions, i.e., well water (65% field capacity), water deficit stress (35% field capacity), soil application of humic acid (44 mg kg−1 soil) under water deficit stress and foliar feeding of humic acid (200 ppm) under water deficit stress, were investigated on two wheat varieties (BWMRI Gom 1 and BWMRI Gom 3). The results demonstrated that water deficit stress substantially decreased the studied morphological and physiological traits, yield components and yield, in both genotypes, with the exception of the proline content of flag leaves. Compared with soil application, foliar feeding of humic acid promoted the ability of wheat to overcome stress conditions better. In the present study, humic acid as a soil application increased the grain yield by 9.13% and 13.86% and the biological yield by 9.94% and 5.19%, whereas foliar treatment increased the grain output by 24.76% and 25.19% and the biological yield by 19.23% and 6.50% in BWMRI Gom 1 and BWMRI Gom 3, respectively, under water deficit stress. Therefore, exogenous foliar humic acid treatment was more effective than soil application in alleviating the effects of drought stress on wheat. 展开更多
关键词 Climate change humic acid foliar application DROUGHT wheat
在线阅读 下载PDF
Ali-A1 and TPL1 proteins interactively modulate awn development in wheat
13
作者 Linyi Qiao Tian Li +9 位作者 Shujuan Liu Xueqi Zhang Min Fan Xiaojun Zhang Xin Li Zujun Yang Juqing Jia Ling Qiao Zhijian Chang Liuling Yan 《The Crop Journal》 2025年第2期468-479,共12页
The awn can contribute to photosynthesis and carbohydrates,enhancing grain yield in wheat.We mapped QAwn.sxau-5A,a major QTL for awn development in wheat(Triticum aestivum).This QTL was delimited to a 994-kb interval ... The awn can contribute to photosynthesis and carbohydrates,enhancing grain yield in wheat.We mapped QAwn.sxau-5A,a major QTL for awn development in wheat(Triticum aestivum).This QTL was delimited to a 994-kb interval at the B1 locus on chromosome 5A,which included the candidate gene encoding a zinc finger protein(TraesCS5A01G542800)as an awn length inhibitor(ALI).The Ali-A1 allele for the awnless trait showed abundant sequence differences in the promoter regions compared to the ali-A1 allele for the long-awn trait.The results of the swap experiment on the promoters from the two ALI-A1 alleles showed that the two promoters caused a difference in the protein level,indicating the gene was regulated at the transcript level.However,the ali-A1 allele contained an SNP that caused a premature stop codon in its coding region,resulting in a truncated protein compared to the functional Ali-A1 protein.The Ali-A1 protein contained two ethylene-responsive element binding factor-associated amphiphilic repression(EAR)motifs,one at the N terminus(EAR-N)and the other at the C terminus(EAR-C),and they were involved in interactions with the wheat co-repressor protein TOPLESS(TPL1).The ali-A1 protein retained the EAR-N motif but lost the EAR-C motif,resulting in the attenuated ability to interact with TPL1.The tpl1 mutant produced a longer awn compared to the wild type.Ali-A1 repressed the transcription of two downstream genes,TaLRP-A1 and TaARF-B1,involved in endogenous auxin concentrations and auxin responses in wheat.We concluded that the awn length is regulated not only by the ALI-A1 gene at transcript levels but also by Ali-A1 and TPL1 at the protein level in wheat. 展开更多
关键词 ALI protein TPL protein Awn AUXIN wheat
在线阅读 下载PDF
Delaying wheat sowing date and increasing sowing rate promotes lignin synthesis and reduces lodging
14
作者 Chunhui Li Haixing Cui +5 位作者 Min Jin Shufang Sun Jiayu Wang Yongli Luo Yong Li Zhenlin Wang 《The Crop Journal》 2025年第1期269-280,共12页
Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date c... Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date can mitigate competition in densely planted populations.However,the underlying mechanism by which it confers resistance to wheat lodging remains elusive.In this study,Zimai 28(lodging-sensitive variety) and Shannong 28(lodging-resistant variety) were used with three sowing treatments on October 22(S1),October 28(S2),and November 3(S3).The sowing rate was adjusted to ensure adequate population size and consistency in the overwintering populations across sowing dates(300 plant m^(-2)for S1,375 plant m^(-2)for S2,and 525 plant m^(-2)for S3),The lodging resistance in winter wheat was increased by delayed sowing and increased sowing rate,which led to a reduction in tiller numbers and fostered primary stem development.A reduction in the overwinter cumulative temperature from 500 to 450℃,coupled with an elevation in sowing rates from 300 to 375 plant m^(-2)(transition from S1 to S2),corresponded with a notable increase in structural carbohydrates(lignin,cellulose,hemicellulose,and pectin) by 175.07 mg g^(-1).Additionally,there was a moderate increase in non-structural carbohydrates,including soluble sugars and starch,by 15.54 mg g^(-1).Delayed sowing and increased sowing rate elevated the precursor contents of lignin synthesis.Enhanced metabolic activity of related pathways ultimately increased dimer/trimer content.In summary,this study highlights the pivotal role of lignin metabolites and cross-linked structures in determining the stem stiffness breaking strength. 展开更多
关键词 wheat LODGING Stem quality Carbohydrates Lignin metabolism
在线阅读 下载PDF
Structural variation-based and gene-based pangenome construction reveals untapped diversity of hexaploid wheat
15
作者 Hong Cheng Lingpeng Kong +7 位作者 Kun Zhu Hang Zhao Xiuli Li Yanwen Zhang Weidong Ning Mei Jiang Bo Song Shifeng Cheng 《Journal of Genetics and Genomics》 2025年第6期774-785,共12页
Increasing number of structural variations(SVs)have been identified as causative mutations for diverse agronomic traits.However,the systematic exploration of SVs quantity,distribution,and contribution in wheat was lac... Increasing number of structural variations(SVs)have been identified as causative mutations for diverse agronomic traits.However,the systematic exploration of SVs quantity,distribution,and contribution in wheat was lacking.Here,we report high-quality gene-based and SV-based pangenomes comprising 22 hexaploid wheat assemblies showing a wide range of chromosome size,gene number,and TE component,which indicates their representativeness of wheat genetic diversity.Pan-gene analyses uncover 140,261 distinct gene families,of which only 23.2%are shared in all accessions.Moreover,we build a∼16.15 Gb graph pangenome containing 695,897 bubbles,intersecting 5132 genes and 230,307 cis-regulatory regions.Pairwise genome comparisons identify∼1,978,221 non-redundant SVs and 497 SV hotspots.Notably,the density of bubbles as well as SVs show remarkable aggregation in centromeres,which probably play an important role in chromosome plasticity and stability.As for functional SVs exploration,we identify 2769 SVs with absolute relative frequency differences exceeding 0.7 between spring and winter growth habit groups.Additionally,several reported functional genes in wheat display complex structural graphs,for example,PPD-A1,VRT-A2,and TaNAAT2-A.These findings deepen our understanding of wheat genetic diversity,providing valuable graphical pangenome and variation resources to improve the efficiency of genome-wide association mapping in wheat. 展开更多
关键词 wheat Pangenome Structural variation Centromere plasticity Growth habit
原文传递
Accelerating wheat breeding by haploid induction
16
作者 Na Zhang Xiaolong Qi +14 位作者 Lei Wu Zongkuan Wang Hongbo Ma Xuecheng Zhu Jing Liu Wenjing Niu Shuwei Guo Yi He Peng Jiang Wei Wang Shaojiang Chen Xiu’e Wang Zhongfu Ni Chenxu Liu Dongtao Liu 《The Crop Journal》 2025年第5期1363-1371,共9页
The identification of haploid induction genes has promoted the advancement of several breeding technologies.Haploid induction genes in wheat,coupled with visual marker,have led to the establishment of a novel in vivo ... The identification of haploid induction genes has promoted the advancement of several breeding technologies.Haploid induction genes in wheat,coupled with visual marker,have led to the establishment of a novel in vivo doubled-haploid(DH)technology.When combined with dominant male sterile genes,this innovative DH method presents a promising avenue for high-throughput production of DH lines.Furthermore,the application of haploid induction genes has facilitated the establishment of other innovative breeding technologies,such as HI-Edit and cyto-swapping in creating cytoplasmic male sterility lines,as well as synthetic apomixis.This review summarizes the progress of DH technology in wheat and presents examples of application of haploid induction genes in accelerating breeding practices,aiming to promote the development of these innovative technologies in wheat and enhancing wheat breeding efficiency. 展开更多
关键词 wheat HAPLOID Haploid induction Doubled haploid Hybrid breeding
在线阅读 下载PDF
Impact of Drought, Salinity, and Waterlogging on Wheat: Physiological, Biochemical Responses, and Yield Implications
17
作者 Mudasser Mehmood Zoahaib Aslam Khan +5 位作者 Adil Mehmood Madiha Zaynab Muhammad Atiq ur Rahman Mohammad Khalid Al-Sadoon M.Harshini Ling Shing Wong 《Phyton-International Journal of Experimental Botany》 2025年第4期1111-1135,共25页
Wheat(Triticum aestivum L.)is a staple crop critical for global food security,yet its productivity is significantly affected by abiotic stresses such as drought,salinity,and waterlogging,which are exacerbated by clima... Wheat(Triticum aestivum L.)is a staple crop critical for global food security,yet its productivity is significantly affected by abiotic stresses such as drought,salinity,and waterlogging,which are exacerbated by climate change.This study evaluated the effects of these stresses on vegetative growth,physiological responses,and yield.Field experiments were conducted using a Randomized Complete Block Design(RCBD)at the Mona Reclamation Experimental Project(MREP),WAPDA,Bhalwal,Sargodha,Punjab Pakistan.Stress treatments included three levels of drought(25%,50%,and 75%field capacity),salinity(4,8,and 12 dS/m),and waterlogging(24,48,and 72 h).Key parameters measured included plant height,leaf area,tiller number,stomatal conductance,chlorophyll content,and antioxidant enzyme activities.The results revealed that drought stress caused a 46%reduction in yield,while salinity and waterlogging reduced yield by 54%and 35%,respectively,with statistically significant differences(p 0.05).Key<physiological changes included a significant reduction in stomatal conductance(from 0.55 to 0.15 mmol m^(2)/s under drought stress,p 0.01)and chlorophyll content(from 48 to 28 SPAD units under drought,p 0.01).Biochemical<<responses indicated elevated levels of malondialdehyde(MDA)and hydrogen peroxide(H2O2),with significant increases in antioxidant enzyme activities,particularly superoxide dismutase(SOD)and catalase(CAT).These findings underscore the need for developing stress-tolerant wheat varieties and implementing agronomic practices to mitigate the impact of abiotic stresses on wheat yield. 展开更多
关键词 Abiotic stress antioxidant enzymes DROUGHT SALINITY wheat cultivation
在线阅读 下载PDF
Production,characterization,and potential utility of a newly synthesized allohexaploid wheat Triticum kiharae
18
作者 Tariq Aslam Tianying Zhang +5 位作者 Taotao Lian Jiawen Zhai Jinning Jia Han Wang Ruili Lyu Bao Liu 《The Crop Journal》 2025年第3期681-693,共13页
Established allopolyploid species often contain specific gene(s)dedicated to suppressing the pairing of homoeologous chromosomes during meiosis.A longstanding question is whether such genes in allopolyploids with lowe... Established allopolyploid species often contain specific gene(s)dedicated to suppressing the pairing of homoeologous chromosomes during meiosis.A longstanding question is whether such genes in allopolyploids with lower ploidy levels can retain full functionality when the ploidy level rises following the addition of a new subgenome during outcrossing.Here,we addressed this question by generating a synthetic allohexaploid wheat species,Triticum kiharae(GGAADD),by crossing the allotetraploid Triticum timopheevii(GGAA)to the diploid Aegilops tauschii(DD),followed by colchicine-induced chromosomal doubling.The gene Pairing homoeologous 1(Ph1)inherited from T.timopheevii was likely hypofunctional in nascent T.kiharae,as evidenced by irregularities during meiotic chromosome pairing and organismal numerical and structural chromosome variation in selfed progeny populations.The allohexaploidization event also induced substantial rewiring of gene expression among homoeologs and nonadditive gene expression,leading to distinct predicted biological functions for differentially expressed genes(DEGs)when they were partitioned into the subgenomes.F1hybrids from a cross between T.kiharae and bread wheat(T.aestivum,BBAADD)were male-sterile but female-fertile,confirming intrinsic postzygotic reproductive isolation between the two species while enabling backcrossing of these sterile F1hybrids to bread wheat.These features provide a feasible route to simultaneously introgress standing congeneric genetic variations from both T.timopheevii and Ae.tauschii,as well as heritable de novo variations that have arisen in T.kiharae into bread wheat. 展开更多
关键词 ALLOPOLYPLOIDY Karyotype variation Transcriptomic shock Germplasm enhancement wheat
在线阅读 下载PDF
Sorghum surpasses wheat as a feed grain for broiler chickens following dietary crude protein reductions
19
作者 Mengzhu Wang Mehdi Toghyani +4 位作者 Shemil P.Macelline Andreas Lemme Andrew J.Holmes Peter H.Selle Sonia Y.Liu 《Journal of Animal Science and Biotechnology》 2025年第3期1224-1239,共16页
Background Wheat and,to a lesser extent,sorghum are the dominant feed grains in Australian chicken-meat production.There is considerable local interest in the development of reduced-crude protein(CP)broiler diets in p... Background Wheat and,to a lesser extent,sorghum are the dominant feed grains in Australian chicken-meat production.There is considerable local interest in the development of reduced-crude protein(CP)broiler diets in part because this would decrease the need to import soybean meal into the country.Maize is rarely included in Australian broiler diets,but birds appear better able to accommodate dietary CP reductions with maize than with wheat-based diets.Sorghum is more similar to maize than wheat and for this reason wheat-and sorghum-based diets,with standard and reduced-CP concentrations,were evaluated in broiler chickens in a direct comparison.Results Reducing dietary CP from 205 to 175 g/kg CP did not statistically influence weight gain and FCR in broilers offered sorghum-based diets from 14 to 35 d post-hatch.In contrast,the 30 g/kg CP reduction compromised weight gain by 10.1%(1,964 versus 2,187 g/bird)and FCR by 9.68%(1.575 versus 1.436),in broilers offered wheat-based diets.Consequently,treatment interactions(P<0.001)were observed for dietary CP levels grain type for both weight gain and FCR.Another treatment interaction(P<0.001)was observed for starch digestibility coefficients in the distal jejunum.Birds offered 205 g/kg CP,wheat-based diets had superior starch digestibility by 11.6%(0.914 versus 0.819),but sorghum supported superior starch digestibility by 9.70%(0.837 versus 0.763)in the context of 175 g/kg CP diets.Conclusions Under the condition of thid study,broiler chickens offered sorghum-based diets had a greater capacity to accommodate dietary CP reductions than their counterparts offered wheat-based diets.This study confirmed that wheat-based diets are not conducive to CP reductions,but the causal factors have yet to be identified precisely. 展开更多
关键词 Amino acids Broiler chickens Crude protein SORGHUM wheat
在线阅读 下载PDF
TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C
20
作者 Yuxiang Qin Bao Zhang +2 位作者 Shoufu Cui Xiaochun Qin Genying Li 《Journal of Integrative Agriculture》 2025年第3期1017-1029,共13页
FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especi... FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins. 展开更多
关键词 wheat FLZ salt tolerance protein interaction Na^(+)exclusion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部