A Ti_(3)SiC_(2)-modified high-silica oxygen/phenolic aerogel composite with excellent oxidation resistance and high-temperature performance was prepared.The experimental results show that the obtained composite has si...A Ti_(3)SiC_(2)-modified high-silica oxygen/phenolic aerogel composite with excellent oxidation resistance and high-temperature performance was prepared.The experimental results show that the obtained composite has significantly improved oxidation resistance.When the addition amount of Ti_(3)SiC_(2)is 75%,the carbonization volume shrinkage rate of the composite after aerobic static combustion is only 5.95%.At the same time,the LAR and MAR after 30 seconds of oxyacetylene ablation under a heat flux density of 1.5 MW/m2 are 0.0307 mm/s and 0.0149 g/s,respectively.The compressive strength after aerobic static combustion at 1000℃is up to 20.43%of that before aerobic static combustion,which is 1.99 times that of the unfilled material,significantly improving the high-temperature mechanical properties of the composite.展开更多
Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this s...Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this study,an Avrami kinetics model for DRX was established,which was capable of predicting the DRX fraction accurately.In addition,the effect of Al_(2)O_(3)short fiber on the DRX mechanisms of TiAl matrix composite during the isothermal compression was investigated for the first time.The re-sults showed that other than inhibiting DRX by particles in the TiAl matrix composites,the addition of Al_(2)O_(3)short fiber accelerated a novel DRX process,which was induced by twinning and twin intersec-tions(TDRX).Thus,this composite exhibited a higher DRX rate than that of the as-cast TiAl monolithic alloy.The origin of the twin intersection and TDRX for the composite was revealed.The stress concentration near the Al_(2)O_(3)fiber was above the critical shear stress for twinning and thus was favorable for the formation of twinning and twin intersections.The high stored strain energy at the regions of twins and twin intersections provided the driving force for TDRX.TDRX accelerated the grain refinement in the TiAl matrix near the Al_(2)O_(3)fiber.The present findings would provide a new perspective on DRX mechanisms,and provide the scientific guidance for optimizing the microstructures of TiAl matrix composites.展开更多
Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corro...Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.展开更多
Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Al...Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Alumina coatings were prepared on the surfaces of hollow quartz filament fiber,then a new lightweight and thermal insulating material were successfully prepared by impregnatingAl_(2)O_(3)–SiO_(2)sol into a needle fabric made by coated hollow quartz filament fiber.The coated quartz fiber,aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),nitrogen adsorption-desorption(BET),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile tests.The effects of different fiber and calcination temperatures on the microstructures and properties ofAl_(2)O_(3)–SiO_(2)composite aerogels were investigated.The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material.Compared to other fibers,Al_(2)O_(3)-coated hollow quartz fiber has significant advantages as reinforcement for composite,and their tensile strength is well retained after high temperature heat treatment.展开更多
Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-...Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.展开更多
The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. Th...The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite m...Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate(TNBT),and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains.The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2,contributing to a significant improved power factor.In the meantime,the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles.As a consequence,a peak figure of merit(zT)of 0.41 is obtained at 525 K in Bi2Se3/15 mol%TiO2 composites,nearly 50%augment over the pristine Bi2Se3 binary compound.展开更多
A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, fol...A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.展开更多
A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was emplo...A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.展开更多
基金Funded by by the Wuhan Science and Technology Project(No.2024010702030141)。
文摘A Ti_(3)SiC_(2)-modified high-silica oxygen/phenolic aerogel composite with excellent oxidation resistance and high-temperature performance was prepared.The experimental results show that the obtained composite has significantly improved oxidation resistance.When the addition amount of Ti_(3)SiC_(2)is 75%,the carbonization volume shrinkage rate of the composite after aerobic static combustion is only 5.95%.At the same time,the LAR and MAR after 30 seconds of oxyacetylene ablation under a heat flux density of 1.5 MW/m2 are 0.0307 mm/s and 0.0149 g/s,respectively.The compressive strength after aerobic static combustion at 1000℃is up to 20.43%of that before aerobic static combustion,which is 1.99 times that of the unfilled material,significantly improving the high-temperature mechanical properties of the composite.
基金the National Science and Technology Major Project(No.2019700160157)the Natural Science Foundation of Hunan Province(No.2021JJ40761)+3 种基金the Central South University Innovation-Driven Research Programmme(No.v2023CXQD030)the Independent Innovation Fund Project Aero Engine Corporation of China(No.CXPT-2021-001)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20230163)the Fundamental Research Funds for the Cen-tral Universities of Central South University(No.2023ZZTS0078)for providing financial support.
文摘Dynamic recrystallization(DRX)is of great significance for the thermomechanical processing and microstructural regulation of TiAl intermetallics.However,the underlying DRX mechanism remains poorly understood.In this study,an Avrami kinetics model for DRX was established,which was capable of predicting the DRX fraction accurately.In addition,the effect of Al_(2)O_(3)short fiber on the DRX mechanisms of TiAl matrix composite during the isothermal compression was investigated for the first time.The re-sults showed that other than inhibiting DRX by particles in the TiAl matrix composites,the addition of Al_(2)O_(3)short fiber accelerated a novel DRX process,which was induced by twinning and twin intersec-tions(TDRX).Thus,this composite exhibited a higher DRX rate than that of the as-cast TiAl monolithic alloy.The origin of the twin intersection and TDRX for the composite was revealed.The stress concentration near the Al_(2)O_(3)fiber was above the critical shear stress for twinning and thus was favorable for the formation of twinning and twin intersections.The high stored strain energy at the regions of twins and twin intersections provided the driving force for TDRX.TDRX accelerated the grain refinement in the TiAl matrix near the Al_(2)O_(3)fiber.The present findings would provide a new perspective on DRX mechanisms,and provide the scientific guidance for optimizing the microstructures of TiAl matrix composites.
基金supported by the National Natural Science Foundation of China(51572103 and 51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)the Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.
文摘Al_(2)O_(3)–SiO_(2)sols were synthesized by using aluminum chloride hex hydrate and tetraethoxysilane(TEOS)as precursors,deionized water and ethanol mixture as the solvent,and propylene oxide as the coagulant aids.Alumina coatings were prepared on the surfaces of hollow quartz filament fiber,then a new lightweight and thermal insulating material were successfully prepared by impregnatingAl_(2)O_(3)–SiO_(2)sol into a needle fabric made by coated hollow quartz filament fiber.The coated quartz fiber,aerogels and composites were characterized by Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),nitrogen adsorption-desorption(BET),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile tests.The effects of different fiber and calcination temperatures on the microstructures and properties ofAl_(2)O_(3)–SiO_(2)composite aerogels were investigated.The test results indicate that the mechanical properties of the aerogels are improved by introducing quartz filament fabrics and the introduction of alumina coating improves the thermal stability of the material.Compared to other fibers,Al_(2)O_(3)-coated hollow quartz fiber has significant advantages as reinforcement for composite,and their tensile strength is well retained after high temperature heat treatment.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174137,11474215 and 21204058the Natural Science Foundation for the Youth of Jiangsu Province under Grant No BK20130284the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.
文摘The aim of this study was to fabricate multi-layered recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL composites for microwave absorbing applications in the 1 - 4 GHz frequency range. The multi-layered composites were 6 mm thick and each consisted of a 2 mm thick layer of recycled α-Fe<sub>2</sub>O<sub>3</sub>/PCL composites at various loadings (5 wt% - 25 wt%) of 16.2 nm recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller, placed between two layers of 2 mm thick OPEFB fiber/PCL composites blended at a fixed ratio of 7:3. The real (ε') and imaginary (ε") components of the relative complex permittivity were measured using the open-ended coaxial probe technique and the values obtained were applied as inputs for the Finite Element Method to calculate the reflection coefficient magnitudes from which the reflection loss (RL) properties were determined. Both ε' and ε" increased linearly with recycled α-Fe<sub>2</sub>O<sub>3</sub> nanofiller content and the values of ε' varied between 3.0 and 3.9 while the ε" values ranged between 0.26 and 0.64 within 1 - 4 GHz. The RL (dB) showed the most prominent values within the 1.38 - 1.46 GHz band with a minimum of -38 dB attained by the 25 wt% composite. Another batch of minimum values occurred in the 2.39 - 3.49 GHz range with the lowest of -25 dB at 2.8 GHz. The recycled α-Fe<sub>2</sub>O<sub>3</sub>/OPEFB fiber/PCL multi-layered composites are promising materials that can be engineered for solving noise problems in the 1 - 4 GHz range.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
基金financially supported by the National Natural Science Foundation of China(Nos.51871199 and 61534001)。
文摘Bi2(Te,Se)3 alloys are conventional commercial thermoelectric materials for solid-state refrigeration around room temperature.In recent years,much attention has been paid to various advanced thermoelectric composite materials due to the unique thermoelectric properties.In this work,Bi2Se3/TiO2 composites were prepared by hot pressing the plate-like Bi2Se3 powders coated in situ with hydrolyzed hytetabutyl-n-butyl titanate(TNBT),and therefore numerous TiO2 in micrometer size could be formed on the interface of Bi2Se3 grains.The carrier concentration in Bi2Se3 matrix is optimized subject to the addition of n-type semiconductor TiO2,contributing to a significant improved power factor.In the meantime,the lattice thermal conductivity is also suppressed due to the enhanced phonon scattering at Bi2Se3/TiO2 interface and amorphous TiO2 particles.As a consequence,a peak figure of merit(zT)of 0.41 is obtained at 525 K in Bi2Se3/15 mol%TiO2 composites,nearly 50%augment over the pristine Bi2Se3 binary compound.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.41373127) and Liaon- ing Provincial Natural Science Foundation of China (No.2013020121).
文摘A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.
文摘A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.
基金the National Natural Science Foundation of China (50772064)Xianyang Scientific and Technological Project (K05010-6)+1 种基金Wenzhou Scientific and Technological Project(H20070016)Shaanxi Scientific and Technological Project(2005K06-G4)