期刊文献+

WO_3/TiO_2复合纤维的制备及储能光催化性能 被引量:7

Preparation and Energy Stored Photocatalytic Properties of WO_3/TiO_2 Composite Fibers
在线阅读 下载PDF
导出
摘要 以钛酸正丁酯为前驱体,采用静电纺丝技术制得了纯锐钛矿TiO2纤维,并以其为基质,通过水热法制备了具有异质结构的WO3/TiO2复合纤维.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散光谱仪(EDS)、透射电子显微镜(TEM)和高分辨透射电子显微镜(HRTEM)等对样品的结构和形貌进行了表征.以罗丹明B的脱色降解为模型反应,考察了样品的光催化性能和储能光催化性能.结果表明,花状WO3微球包裹在TiO2纤维上,得到了具有异质结构的WO3/TiO2复合纤维光催化剂.WO3与TiO2复合有利于光生载流子的输运和分离,增强了体系的量子效率,提高了光催化活性.WO3/TiO2复合纤维经光照处理后,在黑暗条件下显示出储能光催化特性. Heterostructured WO3/TiO2 composite fibers were prepared via electrospinning fabrication of anatase fibers by adopting n-butyl titanate[Ti(OBu)4] as precursors and hydrothermal growth of WO3 nanostructures on anatase fibers substrate.The morphology and structure of WO3/TiO2 composite fibers were characte-rized by X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM) techniques.The results showed that flower-like WO3 microsphere could evenly grow on the TiO2 fibers surface and thus heterostructured WO3/TiO2 composite fibers were successfully obtained.By employing Rhodamine B degradation as the model reaction,the WO3/TiO2 heterostructures showed enhanced photocatalytic efficiency compared with the bare TiO2 fibers under UV light irradiation.The enhanced photocatalytic efficiency could be ascribed to the promoted electron-hole pairs separation induced by the heterojunction and thus enhanced quantum efficiency.Degradation experiment displays that Rhodamine B can be degraded in darkness by the WO3/TiO2 composite fibers photocatalyst with energy storage degradation activity.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2012年第7期1552-1558,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50972027) 教育部新世纪优秀人才支持计划(批准号:NCET-05-0322) 吉林省科技发展计划(批准号:201205034)资助
关键词 静电纺丝技术 水热法 WO3/TiO2复合纤维 储能 光催化降解 Electrospinning technique Hydrothermal method WO3/TiO2composite fibers Energy storage Photocatalytic degradation
  • 相关文献

参考文献26

  • 1Fujishima A., Honda K.. Nature[J]. 1972, 238(5358) : 37-38.
  • 2Chen X. , Mao S. S.. Chem. Rev. [J]. 2007, 107(7) : 2891-2959.
  • 3YangH. G., SunC. H., QiaoS. Z., ZouJ., Liu G., SmithS. C., ChengH. M., Lu G. Q.. Nature[J]. 2008, 453(7195): 638-642.
  • 4Fujishima A., Zhang X. T., Tryk D. A.. Surf. Sci. Rep. [J]. 2008, 63(12) : 515-582.
  • 5Kraeutler B. , Bard A. J.. J. Am. Chem. Soc. [J]. 1978, 100(7) : 2239-2240.
  • 6FoxM. A., DulayM. T.. Chem. Rev.[J]. 1993, 93(1): 341-357.
  • 7Chen X. B. , Mao S. S.. Chem. Rev. [J]. 2007, 107(7) : 2891-2959.
  • 8Subramanian V. , WolfE. E. , Kamat P. V.. J. Am. Chem. Soc. [J]. 2004, 126(15): 4943-4950.
  • 9LIN Xi, LI Dan-Zhen, WU Qing-Ping, FU Xian-Zhi, WANG Xu-Xu. Chem. J. Chi- nese Universities[J]. 2005, 26(4): 727-730.
  • 10CaoT. P., LiY. J., ShaoC. L., WangC. H., LiuY. C.. Mate. Res. Bull.[J]. 2010, 45(10): 1406-1412.

同被引文献41

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部