The decreasing of hazard ratio for cancer incidence (HRCVD) in the range of twenty native tissues (lung, liver, brain, hematologic, neuroendocrine renal, pancreas, lymphoid, bladder, colon, lip-oral-head-neck, leukocy...The decreasing of hazard ratio for cancer incidence (HRCVD) in the range of twenty native tissues (lung, liver, brain, hematologic, neuroendocrine renal, pancreas, lymphoid, bladder, colon, lip-oral-head-neck, leukocytic, rectum and anus, thyroid, soft tissue, prostate, skin, ovarian, breast, uterine) as much, as decreasing of the level of cardiovascular pathology (CVD) in the host before malignization, have been described by C.F. Bell et al. in 2023. Earlier, in 2022, the decreasing of 5-year mortality from cancer in similar range of tissues discussed by us as the inverse dependence from the content of stem CD34 markers in tissues before malignization, with example of population in England. In present article we investigate the interrelation between both data more thoroughly, using accessible and more representative populations level of the data. The analysis shows that high level of HRCVD is able to predicts only high cancer death for tissue sites in the beginning of the range, being applied to the referent data of cancer cases and deaths in estimated population of USA 2024. Along with this, an increasing the content of CD34 stem marker in the native tissues of the same range was favorite for increasing of cancer’s cases at the end of the range, diminishing, in parallel, the signs of vasculo-endothelial pathology, i.e. HR CVD. Thus, the cases (incidence) of cancer depend directly rather from content of CD34, which preexisted in native sites, than that from HRCVD. Further analysis shows that CD34 content averaged over twenty cites dominates over that CD2 marker of total T-cells more than 7 times, in oppose to their ratio in the blood. The enhancement of stem CD34 marker in the range of tissues is accompanied by unidirectional rising of its maturing derivatives, vasculo-endothelial CD31 and total T-cells CD2 markers, which contents relate positively to increasing of cancer death in US population 2024. The increase of CD34 decreases cancer mortality (death: cases) in sites, but indirectly, rather due to enhancement of the denominator. The high HRCVD (more than 1.0) in range of 20 tissues, concerns of those of them, which have had highest mitotic activity (by Ki67), but lowest “stemness” (by CD34), “vascularity” (by CD31), cancer’s incidence (cases) and the worse results of therapy. Oppositely, the normal tissue with lowest HRCVD (below 1.0) and Ki67, but highest CD34, CD31, and cancer incidence (cases) are more sensitive to treatment. Thus, the residential hematopoietic “stemness” in native tissues acts as natural protectors for cardio-vascular system and promoter for cancer incidence in them. The steady and irreversible exhaustion of current regenerative resource (CRR) of BM, which assumed by us as a product of CD34 number and average telomeres length, manifests itself in acceleration of non-malignant CVD and deceleration of malignancy in population +70 (in term the death per 105), according to data extracted from WHO Mortality Database. The similar deficit of CD34 arises artificially during cytotoxic treatment of cancer, when rapid waste of local CRR forces malignant cells to search more “stemness” cites. The competition between malignant and native tissues of the host for scanty CRR seems to be the most important factor for evaluation and prediction of prevalence, curability, and long-term results in oncology.展开更多
Physiological and pathological processes such as embryonic development and tumor progression involve complicated interplay of mechanical,chemical,and biological factors cross a wealth of spatial and temporal scales.In...Physiological and pathological processes such as embryonic development and tumor progression involve complicated interplay of mechanical,chemical,and biological factors cross a wealth of spatial and temporal scales.In this paper,we review some recent advances in the field of mechano-chemo-biological coupling theories in biological tissues and cells,and their applications in cancer,immunological,and other diseases.Key issues in the mechano-chemo-biological modeling of specific dynamic processes of cells and tissues are discussed.A mechano-chemo-biological growth theory is introduced,which interrogates the mechanical,chemical,and biological coupling mechanisms underpinning the growth,remodeling and degradation of tissues such as tumors.The mechano-chemo-biological instabilities of cells and tissues are systematically analyzed,with particular attention to those induced by coupled mechano-chemo-biological mechanisms.Furthermore,we provide a mechano-chemo-biological multiscale computational framework to investigate the dynamic processes of cells and tissues,for example,the migration and metastasis of cancer cells.Besides,we discuss some recent theoretical and experimental findings in the mechano-chemo-biological dynamics of collective cells.Finally,perspectives and clinical applications of the mechanochemo-biological theories of cells and tissues are proposed.展开更多
Smoking is a well-established risk factor for periodontitis,yet the precise mechanisms by which smoking contributes to periodontal disease remain poorly understood.Recent advances in spatial transcriptomics have enabl...Smoking is a well-established risk factor for periodontitis,yet the precise mechanisms by which smoking contributes to periodontal disease remain poorly understood.Recent advances in spatial transcriptomics have enabled a deeper exploration of the periodontal tissue microenvironment at single-cell resolution,offering new opportunities to investigate these mechanisms.In this study,we utilized Visium HD single-cell spatial transcriptomics to profile gingival tissues from 12 individuals,including those with periodontitis,those with smoking-associated periodontitis,and healthy controls.Our analysis revealed that smoking disrupts the epithelial barrier integrity,induces fibroblast alterations,and dysregulates fibroblast–epithelial cell communication,thereby exacerbating periodontitis.The spatial analysis showed that endothelial cells and macrophages are in close proximity and interact,which further promotes the progression of smoking-induced periodontal disease.Importantly,we found that targeting the endothelial CXCL12 signalling pathway in smoking-associated periodontitis reduced the proinflammatory macrophage phenotype,alleviated epithelial inflammation,and reduced alveolar bone resorption.These findings provide novel insights into the pathogenesis of smoking-associated periodontitis and highlight the potential of targeting the endothelial–macrophage interaction as a therapeutic strategy.Furthermore,this study establishes an essential information resource for investigating the effects of smoking on periodontitis,providing a foundation for future research and therapeutic development for this prevalent and debilitating disease.展开更多
Background Viral diseases have profoundly influenced the sustainable development of the swine farming industry.With the development of genomics technology,the combination of transcriptome,genetic variation,immune resp...Background Viral diseases have profoundly influenced the sustainable development of the swine farming industry.With the development of genomics technology,the combination of transcriptome,genetic variation,immune response,and QTL mapping data to illustrate the interactions between pathogen and host immune system,will be an effective tool for identification of disease resistance genes in pigs.The immune system of an organism is the source of disease resistance in livestock,consisting of various immune tissues,as well as the immune cells and cytokines they produced.However,comprehensive systematic studies on transcriptome of porcine immune tissues are still rare.Poly(I:C),as a viral mimic,is commonly used to study immune responses of the body during viral infections,and serves as a valuable tool for investigating immune mechanisms in swine.Results WGCNA analysis identified core immune genes across six immune tissues(bone marrow,jejunum,lymph node,PBMC,spleen,thymus)in Landrace pigs,which are also crucial for the development of PBMCs.The examination of the changes in the proportion of immune cells during three developmental stages(1-month-old,4-month-old,7-month-old)shows a shift from innate immunity to humoral immunity.By integrating different epigenetic genomics datasets,we identified several core immune genes and their causal variants,including IFI44,IFIT5,EIF2AK2 and others,which are closely related to immune development and response.Functional validation studies reveal that the IFI44 gene acts as a negative regulator of the antiviral response;its inhibition effect significantly reduced Poly(I:C)-induced cell necrosis,while enhancing apoptosis to combat viral infections.Conclusion Our study elucidated the fundamental transcriptional program in porcine immune tissues and the immunodynamics underlying development of PBMCs,identifying many core immune genes,including IFI44,which plays a critical negative regulator role in the antiviral response,providing valuable insights for breeding programs aimed at enhancing pig disease resistance.展开更多
Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and deli-cate nature of neural tissue repair.This study aims to design a conductive hydrogel embedded with magnetic MgFe_...Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and deli-cate nature of neural tissue repair.This study aims to design a conductive hydrogel embedded with magnetic MgFe_(2)O_(4) nanoparticles to establish a bioelectrically active and spatially stable microenvironment that promotes spinal cord regeneration through computational analysis(BIOVIA Materials Studio).Hydrogels,known for their biocompatibility and extracellular matrix-mimicking properties,support essential cellular behaviors such as adhesion,proliferation,and migration.The integration of MgFe_(2)O_(4) nanoparticles imparts both electrical conductivity and magnetic responsiveness,enabling controlled transmission of electrical signals that are crucial for guiding cellular processes like differentiation and directed migration.Furthermore,the hydrogel acts as a delivery medium,facilitating the adsorption of MgFe_(2)O_(4) nanoparticles onto spinal tissue through strong Van der Waals and intramolecular interactions.The computational simulations revealed a robust adsorption profile,with a binding distance of 20.180Åand a cumulative adsorption energy of 2740.42 kcal/mol,indicating stable nanoparticle-tissue interactions.Pressure-dependent sorption analysis further demonstrated that reduced pressure conditions enhance adsorption strength,promoting tighter material-tissue integration.The adverse Van der Waals energy and increased intramolecular energy observed under these conditions underscore the importance of optimized adsorption settings for functional tissue interface formation.Altogether,the conductive hydrogel-MgFe_(2)O_(4) composite system offers a promising therapeutic platform by combining structural support,electrical stimulation,and magnetic guidance,thereby enhancing cell-material interactions and fostering an environment conducive to spinal cord tissue repair.展开更多
[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK1...[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK12 and SGK321 were used to feed S. exigua neonates respectively. Survival larvae and dead ones were counted on the 3rd,the 7th,the 10th,the 16th and the 19th day; meanwhile,the pupae amount was recorded,and the pupae weight was measured at the 24th h after pupation. [Result] The survival curves,pupation rates and pupae weights of S. exigua feeding on different tissues of transgenic cotton were not significantly different from those of S. exigua feeding on the corresponding tissues of conventional cotton; pupation rate of S. exigua feeding on different leaves of the same cotton variety were not significantly different from each other,but all higher than that of S. exigua feeding on the flowers of that cotton; and there were no differences among pupation weights of S. exigua feeding on different leaves or flowers of the same cotton variety. [Conclusion] Transgenic cotton showed weak resistance to S. exigua. Hence,in the transgenic cotton fields,more attention should be paid to occurrence trend of S. exigua and its control.展开更多
The inherent complexities of excitable cardiac,nervous,and skeletal muscle tissues pose great challenges in constructing artificial counterparts that closely resemble their natural bioelectrical,structural,and mechani...The inherent complexities of excitable cardiac,nervous,and skeletal muscle tissues pose great challenges in constructing artificial counterparts that closely resemble their natural bioelectrical,structural,and mechanical properties.Recent advances have increasingly revealed the beneficial impact of bioelectrical microenvironments on cellular behaviors,tissue regeneration,and therapeutic efficacy for excitable tissues.This review aims to unveil the mechanisms by which electrical microenvironments enhance the regeneration and functionality of excitable cells and tissues,considering both endogenous electrical cues from electroactive biomaterials and exogenous electrical stimuli from external electronic systems.We explore the synergistic effects of these electrical microenvironments,combined with structural and mechanical guidance,on the regeneration of excitable tissues using tissue engineering scaffolds.Additionally,the emergence of micro/nanoscale bioelectronics has significantly broadened this field,facilitating intimate interactions between implantable bioelectronics and excitable tissues across cellular,tissue,and organ levels.These interactions enable precise data acquisition and localized modulation of cell and tissue functionalities through intricately designed electronic components according to physiological needs.The integration of tissue engineering and bioelectronics promises optimal outcomes,highlighting a growing trend in developing living tissue construct-bioelectronic hybrids for restoring and monitoring damaged excitable tissues.Furthermore,we envision critical challenges in engineering the next-generation hybrids,focusing on integrated fabrication strategies,the development of ionic conductive biomaterials,and their convergence with biosensors.展开更多
Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ...Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.展开更多
Bioprinting is a revolutionary technology within the field of tissue engineering that enables the precise fabrication of three-dimensional(3D)tissue constructs.It combines the principles of engineering and biology to ...Bioprinting is a revolutionary technology within the field of tissue engineering that enables the precise fabrication of three-dimensional(3D)tissue constructs.It combines the principles of engineering and biology to create structures that closely mimic the complexity of native human tissues,facilitating advancements in regenerative medicine and personalized healthcare.This review paper systematically explores the challenges and design requirements in the fabrication of 3D biomimetic tissue constructs,emphasizing the need for advanced bioprinting strategies.Achieving biomimicry involves creating 3D anatomically relevant structures,biomimetic microenvironments,and vascularization.The focus is on overcoming existing bottlenecks through advancements in both fabrication techniques and bio-inks.Future directions in bioprinting are outlined,including multi-modal bioprinting systems,in-situ bioprinting,and the integration of machine learning into bioprinting processes.The critical role of bio-inks and printing methodologies in influencing cell viability is highlighted,providing insights into strategies for enhancing cellular functionality throughout the bioprinting process.Furthermore,the paper addresses post-fabrication considerations,particularly in accelerating tissue maturation,as a pivotal component for advancing the clinical applicability of bioprinted tissues.By navigating through the challenges,innovations,and prospects of advanced bioprinting strategies,this review highlights the transformative impact on tissue engineering.Pushing the boundaries of technological capabilities,these strategies hold the promise of groundbreaking advancements in regenerative medicine and personalized healthcare.Ultimately,the integration of these advanced techniques into bioprinting processes will pave the way for the development of more highly biomimetic and functional bioprinted tissues.展开更多
Tendon and ligament injuries represent a major orthopedic challenge with limited effective regenerative options.In an original research study by Yang et al de-veloped a tissue engineering approach combining aligned na...Tendon and ligament injuries represent a major orthopedic challenge with limited effective regenerative options.In an original research study by Yang et al de-veloped a tissue engineering approach combining aligned nanofiber scaffolds with cyclic uniaxial stretching to promote tenogenic differentiation in bone marrow-derived mesenchymal stem cells.Their results provide critical insight into how structural and mechanical cues can synergize to generate ligament-like tissue in vitro.This editorial contextualizes their findings within the broader field of ligament regeneration and highlights the translational potential of their strategy.展开更多
Aim: To investigate the expression of androgen receptors in the extragenital tissues of developing human embryo. Methods: Using immunohistochemistry, we investigated the distribution of androgen receptor (AR) in t...Aim: To investigate the expression of androgen receptors in the extragenital tissues of developing human embryo. Methods: Using immunohistochemistry, we investigated the distribution of androgen receptor (AR) in the extragenital tissues of paraffin-embedded tissue sections of first trimester (8-12 weeks gestation) human embryos. Gender was determined by polymerized chain reaction. Results: There were no differences in the expression and distribution of AR in male and female embryos at any stage of gestation. AR expression was seen in the thymus gland. The bronchial epithelium of the lungs showed intense positive staining with surrounding stroma negative. Furthermore, positive staining for androgen receptor was exhibited in the spinal cord with a few positive cells in the surrounding tissues. Cardiac valves also showed strong positive staining but with faint reactivity of the surrounding cardiac muscle. There was no staining in kidney, adrenal, liver or bowel. Conclusion: This study demonstrates that immunoreactive AR protein is present in a wide variety of human first trimester fetal tissues and shows the potential for androgen affecting tissues, which are mostly not considered to be androgen dependent. Moreover, it implies that androgen might act as atrophic factor and affect the early development of these organs rather than simply sexual differentiation.展开更多
Objective Accumulation of estrogenic compounds and other carcinogens in normal breast tissues contributes to unpredictable breast cancer incidence during adolescence and throughout life.To assess the role of parabens ...Objective Accumulation of estrogenic compounds and other carcinogens in normal breast tissues contributes to unpredictable breast cancer incidence during adolescence and throughout life.To assess the role of parabens in this phenomenon,the paraben content of adjacent normal-malignant breast tissues is measured in women with breast cancer living in Isfahan Province,Iran.Methods Adjacent normal-malignant breast tissue samples were obtained from 53 subjects.The parabens including methyl-paraben(Me PB),ethyl-paraben(Et PB),propyl-paraben(Pr PB),and butylparaben(Bu PB)were extracted from the sample supernatant and then subjected to gas chromatography analysis.Results Some risk factors for breast cancer were stimulated by parabens in adjacent malignant-normal breast tissues among young and middle-aged women with breast cancer.We observed a significant association for dose-response pattern of Me PB[OR=98.34(11.43–185.2),P=0.027]for both ER+and PR+women and Me PB[OR=164.3(CI:112.3–216.3),P<0.001]for HER2+women than women with negative receptors.The risk of 95-fold increase in Me PB dose and 164-fold increase in∑PBs dose were significant for women with hereditary breast cancer in first-degree relatives.Conclusions These results may promote future epidemiology studies and strategies to improve women's lifestyle and consume paraben-free products.展开更多
Loquat(Eriobotrya japonica Lindl.)is a subtropical evergreen fruit tree that produces fruits with abundant nutrients and medicinal components.Confirming suitable reference genes for a set of loquat samples before qRT-...Loquat(Eriobotrya japonica Lindl.)is a subtropical evergreen fruit tree that produces fruits with abundant nutrients and medicinal components.Confirming suitable reference genes for a set of loquat samples before qRT-PCR experiments is essential for the accurate quantification of gene expression.In this study,eight candidate reference genes were selected from our previously published RNA-seq data,and primers for each candidate reference gene were designed and evaluated.The Cq values of the candidate reference genes were calculated by RT-qPCR in 31 different loquat samples,including 12 subgroups of developing or abiotic-stressed tissues.Different combinations of stable reference genes were screened according to a comprehensive rank,which was synthesized from the results of four algorithms,including the geNorm,NormFinder,BestKeeper andΔCt methods.The screened reference genes were verified by normalizing EjLGA1 in each subgroup.The obtained suitable combinations of reference genes for accurate normalization were GAPDH,EF1αand ACT for floral development;GAPDH,UBCE and ACT for fruit setting;EF1α,GAPDH and eIF2B for fruit ripening;ACT,EF1αand UBCE for leaves under heat stress;eIF2B,UBCE and EF1αfor leaves under freezing stress;EF1α,TUA and UBCE for leaves under salt stress;ACT,EF1αand eIF2B for immature pulp under freezing stress;ACT,UBCE and eIF2B for immature seeds under freezing stress;EF1α,eIF2B and UBCE for both immature pulp and seeds under freezing stress;UBCE,TUB and TUA for red-fleshed fruits under cold-storage stress;eIF2B,RPS3 and TUB for white-fleshed fruits under coldstorage stress;and eIF2B,UBCE and RPS3 for both red-and white-fleshed fruits under cold-storage stress.This study obtained different combinations of stable reference genes for accurate normalization in twelve subgroups of developing or abiotic-stressed tissues in loquat.To our knowledge,this is the first report to obtain stable reference genes for normalizing gene expression of abiotic-stressed tissues in E.japonica.The use of the three most stable reference genes could increase the reliability of future quantification experiments.展开更多
Background:This infrastructure delivers biological material necessary for several research projects to Vision Health Research Network investigators(VHRN).Methods:Héma-Québec is the organism in charge obtaini...Background:This infrastructure delivers biological material necessary for several research projects to Vision Health Research Network investigators(VHRN).Methods:Héma-Québec is the organism in charge obtaining consent and retrieving donor eyes for patient treatment or for research.In Quebec City,donor eyes are sent to the eye bank of the“Centre Universitaire d’Ophtalmologie”(CUO)of Saint-Sacrement hospital.Technicians at the eye bank evaluate the quality of the tissues.Those unfit for graft are transferred to the infrastructure where the coordinator encodes samples prior to their distribution.Results:Between 2013 and 2017,27 fundamental investigators,clinical investigators and collaborators supported by 60 students,trainees and laboratory assistants used this infrastructure to move forward their projects.Since 2013,results from those projects generated 21 scientific publications and 232 presentations.The infrastructure helped VHRN investigators obtain near 4 million dollars in grants from many organisms(CIHR,NSERC,Foundations,etc.).These grants allowed recruitment and formation of highly qualified personnel.Last year(April 2016 to March 2017),189 corneas and 23 eyes transited through the infrastructure.Conclusions:This infrastructure is available for all investigators that are members of the VHRN.Many original projects have been elaborated thanks to the human ocular tissues provided by this infrastructure.These projects will advance our knowledge in vision health.A better understanding of eye functions will lead to new treatments for eye diseases.展开更多
The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was ...The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-l-picrylhydra- zyl radicals (DPPH) method and 2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method. The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues. Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g^-1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g^-1 DW). The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equiv- alent antioxidant capacity (VCEAC) g^-1 DW) and average of ABTS value (78.70 mg VCEAC g-1 DW) in peel. The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from -0.150 to 0.664 for the total flavonoids. The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel. In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes. Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.展开更多
Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of...Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of biomaterials,cells,and biomolecules in a layer-by-layer fashion,with precisely controlled spatial distribution.This technology is expected to address the organ-shortage issue in the future.In this review,we first introduce three categories of 3D bioprinting strategies:inkjet-based printing(IBP),extrusion-based printing(EBP),and light-based printing(LBP).Biomaterials and cells,which are normally referred to as“bioinks,”are then discussed.We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures,including cartilage,bone,skin,muscle,vascular network,and so on.The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well.Finally,the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.展开更多
AIM: To investigate whether vascular endothelial growth factor (VEGF) was over-expressed in hepatocellular carcinoma (HCC) or in surrounding cirrhotic liver tissues.METHODS: Immunohistochemistry was performed to inves...AIM: To investigate whether vascular endothelial growth factor (VEGF) was over-expressed in hepatocellular carcinoma (HCC) or in surrounding cirrhotic liver tissues.METHODS: Immunohistochemistry was performed to investigate the expression of VEGF proteins in HCC tissues from 105 consecutive patients undergoing curative resection for HCC. The immunostaining results and related clinicopathologic materials were analyzed with statistical methods. Kaplan-Meier method was used to calculate survival curves, and Log-rank test was performed to compare differences in survival rates of the patients with positive HCC staining and negative VEGF.RESULTS: VEGF-positive expression was found in 72 of105 HCC patients (68.6%). Capsular infiltration (P= 0.005),vascular invasion (P = 0.035) and intrahepatic metastasis(P=0.008) were observed more frequently in patients with VEGF-positive expression than in those with VEGFnegative expression. Kaplan-Meier curves showed that VEGF-positive expression was associated with a shorter overall survival (P = 0.014). VEGF-positive expression was found in 47 of tissues 68 HCC (69.1%), and VEGF-positive expression was found in 54 of 68 surrounding cirrhotic liver tissues (79.4%). VEGF-positive expression was significantly higher in surrounding cirrhotic liver tissues than in HCC (P= 0.017).CONCLUSION: VEGF may play an important role in the angiogenesis and prognosis of HCC, as well as in the angiogenesis of liver cirrhosis.展开更多
Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications....Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.展开更多
AIM: To detect Salmonella enteritidis (S. enteritidis) in paraffin slices and antigen location in infected duck tissues. METHODS: The rabbits were immunized with purified bacillus to obtain S. enteritidis-specific...AIM: To detect Salmonella enteritidis (S. enteritidis) in paraffin slices and antigen location in infected duck tissues. METHODS: The rabbits were immunized with purified bacillus to obtain S. enteritidis-specific antibody, which were then extracted by the caprylic-ammonium sulphate method, purified through High-Q columns. An indirect immuno-fluorescent staining method (IFA) was established to detect the S. enteritidis antigen in paraffin slices. Detected S. enteritidis in each organ tissue of ducklings experimentally infected with S. enteritidis. RESULTS: The gland of Garder, heart, kidney, spleen, liver, brain, ileum, jejunum, bursa of Fabricius from S. enteritidis experimentally infected ducklings were positive or strongly positive, and the S. enteritidis antigen mainly distributed in the infected cell cytoplasm.CONCLUSION: IFA is an intuitionist, sensitive and specific method in detecting S. enteritidis antigen in paraffin wax slices, and it is a good method in diagnosis and antigen location of S. enteritidis. We also conclude that the gland of Garder, heart, kidney, spleen, liver, ileum, jejunum are target organs in S. enteritidis infections of duck, and S. enteritidis is an intracellular parasitic bacterium.展开更多
文摘The decreasing of hazard ratio for cancer incidence (HRCVD) in the range of twenty native tissues (lung, liver, brain, hematologic, neuroendocrine renal, pancreas, lymphoid, bladder, colon, lip-oral-head-neck, leukocytic, rectum and anus, thyroid, soft tissue, prostate, skin, ovarian, breast, uterine) as much, as decreasing of the level of cardiovascular pathology (CVD) in the host before malignization, have been described by C.F. Bell et al. in 2023. Earlier, in 2022, the decreasing of 5-year mortality from cancer in similar range of tissues discussed by us as the inverse dependence from the content of stem CD34 markers in tissues before malignization, with example of population in England. In present article we investigate the interrelation between both data more thoroughly, using accessible and more representative populations level of the data. The analysis shows that high level of HRCVD is able to predicts only high cancer death for tissue sites in the beginning of the range, being applied to the referent data of cancer cases and deaths in estimated population of USA 2024. Along with this, an increasing the content of CD34 stem marker in the native tissues of the same range was favorite for increasing of cancer’s cases at the end of the range, diminishing, in parallel, the signs of vasculo-endothelial pathology, i.e. HR CVD. Thus, the cases (incidence) of cancer depend directly rather from content of CD34, which preexisted in native sites, than that from HRCVD. Further analysis shows that CD34 content averaged over twenty cites dominates over that CD2 marker of total T-cells more than 7 times, in oppose to their ratio in the blood. The enhancement of stem CD34 marker in the range of tissues is accompanied by unidirectional rising of its maturing derivatives, vasculo-endothelial CD31 and total T-cells CD2 markers, which contents relate positively to increasing of cancer death in US population 2024. The increase of CD34 decreases cancer mortality (death: cases) in sites, but indirectly, rather due to enhancement of the denominator. The high HRCVD (more than 1.0) in range of 20 tissues, concerns of those of them, which have had highest mitotic activity (by Ki67), but lowest “stemness” (by CD34), “vascularity” (by CD31), cancer’s incidence (cases) and the worse results of therapy. Oppositely, the normal tissue with lowest HRCVD (below 1.0) and Ki67, but highest CD34, CD31, and cancer incidence (cases) are more sensitive to treatment. Thus, the residential hematopoietic “stemness” in native tissues acts as natural protectors for cardio-vascular system and promoter for cancer incidence in them. The steady and irreversible exhaustion of current regenerative resource (CRR) of BM, which assumed by us as a product of CD34 number and average telomeres length, manifests itself in acceleration of non-malignant CVD and deceleration of malignancy in population +70 (in term the death per 105), according to data extracted from WHO Mortality Database. The similar deficit of CD34 arises artificially during cytotoxic treatment of cancer, when rapid waste of local CRR forces malignant cells to search more “stemness” cites. The competition between malignant and native tissues of the host for scanty CRR seems to be the most important factor for evaluation and prediction of prevalence, curability, and long-term results in oncology.
基金supported by the National Natural Science Foundation of China(Grant Nos.12032014,T2488101,and 12325209)。
文摘Physiological and pathological processes such as embryonic development and tumor progression involve complicated interplay of mechanical,chemical,and biological factors cross a wealth of spatial and temporal scales.In this paper,we review some recent advances in the field of mechano-chemo-biological coupling theories in biological tissues and cells,and their applications in cancer,immunological,and other diseases.Key issues in the mechano-chemo-biological modeling of specific dynamic processes of cells and tissues are discussed.A mechano-chemo-biological growth theory is introduced,which interrogates the mechanical,chemical,and biological coupling mechanisms underpinning the growth,remodeling and degradation of tissues such as tumors.The mechano-chemo-biological instabilities of cells and tissues are systematically analyzed,with particular attention to those induced by coupled mechano-chemo-biological mechanisms.Furthermore,we provide a mechano-chemo-biological multiscale computational framework to investigate the dynamic processes of cells and tissues,for example,the migration and metastasis of cancer cells.Besides,we discuss some recent theoretical and experimental findings in the mechano-chemo-biological dynamics of collective cells.Finally,perspectives and clinical applications of the mechanochemo-biological theories of cells and tissues are proposed.
基金supported by grants from the National Natural Science Foundation of China(Grant nos.82201011,82370958 and 81870770).
文摘Smoking is a well-established risk factor for periodontitis,yet the precise mechanisms by which smoking contributes to periodontal disease remain poorly understood.Recent advances in spatial transcriptomics have enabled a deeper exploration of the periodontal tissue microenvironment at single-cell resolution,offering new opportunities to investigate these mechanisms.In this study,we utilized Visium HD single-cell spatial transcriptomics to profile gingival tissues from 12 individuals,including those with periodontitis,those with smoking-associated periodontitis,and healthy controls.Our analysis revealed that smoking disrupts the epithelial barrier integrity,induces fibroblast alterations,and dysregulates fibroblast–epithelial cell communication,thereby exacerbating periodontitis.The spatial analysis showed that endothelial cells and macrophages are in close proximity and interact,which further promotes the progression of smoking-induced periodontal disease.Importantly,we found that targeting the endothelial CXCL12 signalling pathway in smoking-associated periodontitis reduced the proinflammatory macrophage phenotype,alleviated epithelial inflammation,and reduced alveolar bone resorption.These findings provide novel insights into the pathogenesis of smoking-associated periodontitis and highlight the potential of targeting the endothelial–macrophage interaction as a therapeutic strategy.Furthermore,this study establishes an essential information resource for investigating the effects of smoking on periodontitis,providing a foundation for future research and therapeutic development for this prevalent and debilitating disease.
基金financially supported by the Biological Breeding-National Science and Technology Major Project(No.2023ZD0407106)National Key R&D Program of China(No.2023YFD1300400)Biological Breeding-National Science and Technology Major Project,No.2023ZD0407106,Kai Xing。
文摘Background Viral diseases have profoundly influenced the sustainable development of the swine farming industry.With the development of genomics technology,the combination of transcriptome,genetic variation,immune response,and QTL mapping data to illustrate the interactions between pathogen and host immune system,will be an effective tool for identification of disease resistance genes in pigs.The immune system of an organism is the source of disease resistance in livestock,consisting of various immune tissues,as well as the immune cells and cytokines they produced.However,comprehensive systematic studies on transcriptome of porcine immune tissues are still rare.Poly(I:C),as a viral mimic,is commonly used to study immune responses of the body during viral infections,and serves as a valuable tool for investigating immune mechanisms in swine.Results WGCNA analysis identified core immune genes across six immune tissues(bone marrow,jejunum,lymph node,PBMC,spleen,thymus)in Landrace pigs,which are also crucial for the development of PBMCs.The examination of the changes in the proportion of immune cells during three developmental stages(1-month-old,4-month-old,7-month-old)shows a shift from innate immunity to humoral immunity.By integrating different epigenetic genomics datasets,we identified several core immune genes and their causal variants,including IFI44,IFIT5,EIF2AK2 and others,which are closely related to immune development and response.Functional validation studies reveal that the IFI44 gene acts as a negative regulator of the antiviral response;its inhibition effect significantly reduced Poly(I:C)-induced cell necrosis,while enhancing apoptosis to combat viral infections.Conclusion Our study elucidated the fundamental transcriptional program in porcine immune tissues and the immunodynamics underlying development of PBMCs,identifying many core immune genes,including IFI44,which plays a critical negative regulator role in the antiviral response,providing valuable insights for breeding programs aimed at enhancing pig disease resistance.
基金the“Young Talent Research Grant”:(600-RMC/YTR/5/3(004/2022)Universiti Teknologi Mara(UiTM)for providing the financial support.
文摘Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and deli-cate nature of neural tissue repair.This study aims to design a conductive hydrogel embedded with magnetic MgFe_(2)O_(4) nanoparticles to establish a bioelectrically active and spatially stable microenvironment that promotes spinal cord regeneration through computational analysis(BIOVIA Materials Studio).Hydrogels,known for their biocompatibility and extracellular matrix-mimicking properties,support essential cellular behaviors such as adhesion,proliferation,and migration.The integration of MgFe_(2)O_(4) nanoparticles imparts both electrical conductivity and magnetic responsiveness,enabling controlled transmission of electrical signals that are crucial for guiding cellular processes like differentiation and directed migration.Furthermore,the hydrogel acts as a delivery medium,facilitating the adsorption of MgFe_(2)O_(4) nanoparticles onto spinal tissue through strong Van der Waals and intramolecular interactions.The computational simulations revealed a robust adsorption profile,with a binding distance of 20.180Åand a cumulative adsorption energy of 2740.42 kcal/mol,indicating stable nanoparticle-tissue interactions.Pressure-dependent sorption analysis further demonstrated that reduced pressure conditions enhance adsorption strength,promoting tighter material-tissue integration.The adverse Van der Waals energy and increased intramolecular energy observed under these conditions underscore the importance of optimized adsorption settings for functional tissue interface formation.Altogether,the conductive hydrogel-MgFe_(2)O_(4) composite system offers a promising therapeutic platform by combining structural support,electrical stimulation,and magnetic guidance,thereby enhancing cell-material interactions and fostering an environment conducive to spinal cord tissue repair.
基金Supported by National Transgenic Major Project ( Safe Monitoring Technique of Transgenic Organism 2008ZX08012-004)~~
文摘[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK12 and SGK321 were used to feed S. exigua neonates respectively. Survival larvae and dead ones were counted on the 3rd,the 7th,the 10th,the 16th and the 19th day; meanwhile,the pupae amount was recorded,and the pupae weight was measured at the 24th h after pupation. [Result] The survival curves,pupation rates and pupae weights of S. exigua feeding on different tissues of transgenic cotton were not significantly different from those of S. exigua feeding on the corresponding tissues of conventional cotton; pupation rate of S. exigua feeding on different leaves of the same cotton variety were not significantly different from each other,but all higher than that of S. exigua feeding on the flowers of that cotton; and there were no differences among pupation weights of S. exigua feeding on different leaves or flowers of the same cotton variety. [Conclusion] Transgenic cotton showed weak resistance to S. exigua. Hence,in the transgenic cotton fields,more attention should be paid to occurrence trend of S. exigua and its control.
基金financially supported by the National Natural Science Foundation of China(Nos.52125501,52405325)the Key Research Project of Shaanxi Province(Nos.2021LLRH-08,2024SF2-GJHX-34)+5 种基金the Program for Innovation Team of Shaanxi Province(No.2023-CX-TD17)the Postdoctoral Fellowship Program of CPSF(No.GZB20230573)the Postdoctoral Project of Shaanxi Province(No.2023BSHYDZZ30)the Basic Research Program of Natural Science in Shaanxi Province(No.2021JQ-906)the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities。
文摘The inherent complexities of excitable cardiac,nervous,and skeletal muscle tissues pose great challenges in constructing artificial counterparts that closely resemble their natural bioelectrical,structural,and mechanical properties.Recent advances have increasingly revealed the beneficial impact of bioelectrical microenvironments on cellular behaviors,tissue regeneration,and therapeutic efficacy for excitable tissues.This review aims to unveil the mechanisms by which electrical microenvironments enhance the regeneration and functionality of excitable cells and tissues,considering both endogenous electrical cues from electroactive biomaterials and exogenous electrical stimuli from external electronic systems.We explore the synergistic effects of these electrical microenvironments,combined with structural and mechanical guidance,on the regeneration of excitable tissues using tissue engineering scaffolds.Additionally,the emergence of micro/nanoscale bioelectronics has significantly broadened this field,facilitating intimate interactions between implantable bioelectronics and excitable tissues across cellular,tissue,and organ levels.These interactions enable precise data acquisition and localized modulation of cell and tissue functionalities through intricately designed electronic components according to physiological needs.The integration of tissue engineering and bioelectronics promises optimal outcomes,highlighting a growing trend in developing living tissue construct-bioelectronic hybrids for restoring and monitoring damaged excitable tissues.Furthermore,we envision critical challenges in engineering the next-generation hybrids,focusing on integrated fabrication strategies,the development of ionic conductive biomaterials,and their convergence with biosensors.
文摘Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.
基金support from NTU Presidential Postdoctoral Fellowshipthe support from the National Research Foundation,Singapore,under its NRF Investigatorship(NRFNRFI07-2021-007,Funding Awardee:Wai Yee Yeong)。
文摘Bioprinting is a revolutionary technology within the field of tissue engineering that enables the precise fabrication of three-dimensional(3D)tissue constructs.It combines the principles of engineering and biology to create structures that closely mimic the complexity of native human tissues,facilitating advancements in regenerative medicine and personalized healthcare.This review paper systematically explores the challenges and design requirements in the fabrication of 3D biomimetic tissue constructs,emphasizing the need for advanced bioprinting strategies.Achieving biomimicry involves creating 3D anatomically relevant structures,biomimetic microenvironments,and vascularization.The focus is on overcoming existing bottlenecks through advancements in both fabrication techniques and bio-inks.Future directions in bioprinting are outlined,including multi-modal bioprinting systems,in-situ bioprinting,and the integration of machine learning into bioprinting processes.The critical role of bio-inks and printing methodologies in influencing cell viability is highlighted,providing insights into strategies for enhancing cellular functionality throughout the bioprinting process.Furthermore,the paper addresses post-fabrication considerations,particularly in accelerating tissue maturation,as a pivotal component for advancing the clinical applicability of bioprinted tissues.By navigating through the challenges,innovations,and prospects of advanced bioprinting strategies,this review highlights the transformative impact on tissue engineering.Pushing the boundaries of technological capabilities,these strategies hold the promise of groundbreaking advancements in regenerative medicine and personalized healthcare.Ultimately,the integration of these advanced techniques into bioprinting processes will pave the way for the development of more highly biomimetic and functional bioprinted tissues.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education,No.NRF-2022R1I1A1A01068652.
文摘Tendon and ligament injuries represent a major orthopedic challenge with limited effective regenerative options.In an original research study by Yang et al de-veloped a tissue engineering approach combining aligned nanofiber scaffolds with cyclic uniaxial stretching to promote tenogenic differentiation in bone marrow-derived mesenchymal stem cells.Their results provide critical insight into how structural and mechanical cues can synergize to generate ligament-like tissue in vitro.This editorial contextualizes their findings within the broader field of ligament regeneration and highlights the translational potential of their strategy.
文摘Aim: To investigate the expression of androgen receptors in the extragenital tissues of developing human embryo. Methods: Using immunohistochemistry, we investigated the distribution of androgen receptor (AR) in the extragenital tissues of paraffin-embedded tissue sections of first trimester (8-12 weeks gestation) human embryos. Gender was determined by polymerized chain reaction. Results: There were no differences in the expression and distribution of AR in male and female embryos at any stage of gestation. AR expression was seen in the thymus gland. The bronchial epithelium of the lungs showed intense positive staining with surrounding stroma negative. Furthermore, positive staining for androgen receptor was exhibited in the spinal cord with a few positive cells in the surrounding tissues. Cardiac valves also showed strong positive staining but with faint reactivity of the surrounding cardiac muscle. There was no staining in kidney, adrenal, liver or bowel. Conclusion: This study demonstrates that immunoreactive AR protein is present in a wide variety of human first trimester fetal tissues and shows the potential for androgen affecting tissues, which are mostly not considered to be androgen dependent. Moreover, it implies that androgen might act as atrophic factor and affect the early development of these organs rather than simply sexual differentiation.
基金funded by Isfahan University of Medical Sciences,Isfahan,Iran [Research Project code:397158]
文摘Objective Accumulation of estrogenic compounds and other carcinogens in normal breast tissues contributes to unpredictable breast cancer incidence during adolescence and throughout life.To assess the role of parabens in this phenomenon,the paraben content of adjacent normal-malignant breast tissues is measured in women with breast cancer living in Isfahan Province,Iran.Methods Adjacent normal-malignant breast tissue samples were obtained from 53 subjects.The parabens including methyl-paraben(Me PB),ethyl-paraben(Et PB),propyl-paraben(Pr PB),and butylparaben(Bu PB)were extracted from the sample supernatant and then subjected to gas chromatography analysis.Results Some risk factors for breast cancer were stimulated by parabens in adjacent malignant-normal breast tissues among young and middle-aged women with breast cancer.We observed a significant association for dose-response pattern of Me PB[OR=98.34(11.43–185.2),P=0.027]for both ER+and PR+women and Me PB[OR=164.3(CI:112.3–216.3),P<0.001]for HER2+women than women with negative receptors.The risk of 95-fold increase in Me PB dose and 164-fold increase in∑PBs dose were significant for women with hereditary breast cancer in first-degree relatives.Conclusions These results may promote future epidemiology studies and strategies to improve women's lifestyle and consume paraben-free products.
基金funded by the Natural Science Foundation of Fujian Province(2021J05240)Fujian Provincial Science and Technology Project(2021N5014,2022N5006)+1 种基金Research Project of Putian Science and Technology Bureau(2021ZP08,2021ZP09,2021ZP10,2021ZP11)Scientific Research Project of Putian University(2018064).
文摘Loquat(Eriobotrya japonica Lindl.)is a subtropical evergreen fruit tree that produces fruits with abundant nutrients and medicinal components.Confirming suitable reference genes for a set of loquat samples before qRT-PCR experiments is essential for the accurate quantification of gene expression.In this study,eight candidate reference genes were selected from our previously published RNA-seq data,and primers for each candidate reference gene were designed and evaluated.The Cq values of the candidate reference genes were calculated by RT-qPCR in 31 different loquat samples,including 12 subgroups of developing or abiotic-stressed tissues.Different combinations of stable reference genes were screened according to a comprehensive rank,which was synthesized from the results of four algorithms,including the geNorm,NormFinder,BestKeeper andΔCt methods.The screened reference genes were verified by normalizing EjLGA1 in each subgroup.The obtained suitable combinations of reference genes for accurate normalization were GAPDH,EF1αand ACT for floral development;GAPDH,UBCE and ACT for fruit setting;EF1α,GAPDH and eIF2B for fruit ripening;ACT,EF1αand UBCE for leaves under heat stress;eIF2B,UBCE and EF1αfor leaves under freezing stress;EF1α,TUA and UBCE for leaves under salt stress;ACT,EF1αand eIF2B for immature pulp under freezing stress;ACT,UBCE and eIF2B for immature seeds under freezing stress;EF1α,eIF2B and UBCE for both immature pulp and seeds under freezing stress;UBCE,TUB and TUA for red-fleshed fruits under cold-storage stress;eIF2B,RPS3 and TUB for white-fleshed fruits under coldstorage stress;and eIF2B,UBCE and RPS3 for both red-and white-fleshed fruits under cold-storage stress.This study obtained different combinations of stable reference genes for accurate normalization in twelve subgroups of developing or abiotic-stressed tissues in loquat.To our knowledge,this is the first report to obtain stable reference genes for normalizing gene expression of abiotic-stressed tissues in E.japonica.The use of the three most stable reference genes could increase the reliability of future quantification experiments.
文摘Background:This infrastructure delivers biological material necessary for several research projects to Vision Health Research Network investigators(VHRN).Methods:Héma-Québec is the organism in charge obtaining consent and retrieving donor eyes for patient treatment or for research.In Quebec City,donor eyes are sent to the eye bank of the“Centre Universitaire d’Ophtalmologie”(CUO)of Saint-Sacrement hospital.Technicians at the eye bank evaluate the quality of the tissues.Those unfit for graft are transferred to the infrastructure where the coordinator encodes samples prior to their distribution.Results:Between 2013 and 2017,27 fundamental investigators,clinical investigators and collaborators supported by 60 students,trainees and laboratory assistants used this infrastructure to move forward their projects.Since 2013,results from those projects generated 21 scientific publications and 232 presentations.The infrastructure helped VHRN investigators obtain near 4 million dollars in grants from many organisms(CIHR,NSERC,Foundations,etc.).These grants allowed recruitment and formation of highly qualified personnel.Last year(April 2016 to March 2017),189 corneas and 23 eyes transited through the infrastructure.Conclusions:This infrastructure is available for all investigators that are members of the VHRN.Many original projects have been elaborated thanks to the human ocular tissues provided by this infrastructure.These projects will advance our knowledge in vision health.A better understanding of eye functions will lead to new treatments for eye diseases.
基金supported by the Identification of the Common Nutrients of Edible Agricultural Products and the Character Nutrients of Special Agricultural Products and Their Key Control Points of Quality,China (GJFP201701501)the Chongqing Program for Production of Late Maturing Citrus Fruits,China (20174-4)+2 种基金the Program for Talent Introduction of Chongqing Three Gorges University,China (14RC05)the Program for Chongqing Municipal Education Commission,China (KJ1501015)the Program for Chongqing Science & Technology Commission,China (cstc2016jcyj A0555)
文摘The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-l-picrylhydra- zyl radicals (DPPH) method and 2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method. The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues. Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g^-1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g^-1 DW). The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equiv- alent antioxidant capacity (VCEAC) g^-1 DW) and average of ABTS value (78.70 mg VCEAC g-1 DW) in peel. The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from -0.150 to 0.664 for the total flavonoids. The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel. In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes. Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.
基金The authors would like to acknowledge support from the National Natural Science Foundation of China(51875518,51475419,and 81501607)the Natural Science Foundation of Zhejiang Province of China(LY15H160019)the Key Research and Development Projects of Zhejiang Province(2017C01054).
文摘Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of biomaterials,cells,and biomolecules in a layer-by-layer fashion,with precisely controlled spatial distribution.This technology is expected to address the organ-shortage issue in the future.In this review,we first introduce three categories of 3D bioprinting strategies:inkjet-based printing(IBP),extrusion-based printing(EBP),and light-based printing(LBP).Biomaterials and cells,which are normally referred to as“bioinks,”are then discussed.We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures,including cartilage,bone,skin,muscle,vascular network,and so on.The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well.Finally,the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.
基金Supported by the China Scholarship Council, No. 98915009
文摘AIM: To investigate whether vascular endothelial growth factor (VEGF) was over-expressed in hepatocellular carcinoma (HCC) or in surrounding cirrhotic liver tissues.METHODS: Immunohistochemistry was performed to investigate the expression of VEGF proteins in HCC tissues from 105 consecutive patients undergoing curative resection for HCC. The immunostaining results and related clinicopathologic materials were analyzed with statistical methods. Kaplan-Meier method was used to calculate survival curves, and Log-rank test was performed to compare differences in survival rates of the patients with positive HCC staining and negative VEGF.RESULTS: VEGF-positive expression was found in 72 of105 HCC patients (68.6%). Capsular infiltration (P= 0.005),vascular invasion (P = 0.035) and intrahepatic metastasis(P=0.008) were observed more frequently in patients with VEGF-positive expression than in those with VEGFnegative expression. Kaplan-Meier curves showed that VEGF-positive expression was associated with a shorter overall survival (P = 0.014). VEGF-positive expression was found in 47 of tissues 68 HCC (69.1%), and VEGF-positive expression was found in 54 of 68 surrounding cirrhotic liver tissues (79.4%). VEGF-positive expression was significantly higher in surrounding cirrhotic liver tissues than in HCC (P= 0.017).CONCLUSION: VEGF may play an important role in the angiogenesis and prognosis of HCC, as well as in the angiogenesis of liver cirrhosis.
文摘Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.
基金the National Key Technology R&D Program of China, No. 2004BA 901A 03National Scientific and Sechnical Support Program, No. 2007Z06-017+3 种基金The Cultvation Fund of the Key Scientific and Technical Innovation Project & Ministry of Education of China, No. 706050Program for New Century Excellent Talents in University, No. NCET-04-0906/NCET-06-0818Sichuan Province Basic Research Program, No. 04JY0290061/07JY029-017Program for Key Disciplines Construction of Sichuan Province No. SZD0418
文摘AIM: To detect Salmonella enteritidis (S. enteritidis) in paraffin slices and antigen location in infected duck tissues. METHODS: The rabbits were immunized with purified bacillus to obtain S. enteritidis-specific antibody, which were then extracted by the caprylic-ammonium sulphate method, purified through High-Q columns. An indirect immuno-fluorescent staining method (IFA) was established to detect the S. enteritidis antigen in paraffin slices. Detected S. enteritidis in each organ tissue of ducklings experimentally infected with S. enteritidis. RESULTS: The gland of Garder, heart, kidney, spleen, liver, brain, ileum, jejunum, bursa of Fabricius from S. enteritidis experimentally infected ducklings were positive or strongly positive, and the S. enteritidis antigen mainly distributed in the infected cell cytoplasm.CONCLUSION: IFA is an intuitionist, sensitive and specific method in detecting S. enteritidis antigen in paraffin wax slices, and it is a good method in diagnosis and antigen location of S. enteritidis. We also conclude that the gland of Garder, heart, kidney, spleen, liver, ileum, jejunum are target organs in S. enteritidis infections of duck, and S. enteritidis is an intracellular parasitic bacterium.