Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
In this article,a three-dimensional cooperative guidance problem for highly maneuvering targets is investigated under the assumption of perfect information.Inspired by the coverage strategy,the cooperative guidance pr...In this article,a three-dimensional cooperative guidance problem for highly maneuvering targets is investigated under the assumption of perfect information.Inspired by the coverage strategy,the cooperative guidance problem is decomposed into one-on-one guidance problems against predictive interception points.To expand the coverage area of each missile,these one-on-one guidance problems are formulated as flight path angle tracking problems,and the optimal error dynamics is extended to derive the guidance law analytically.In addition,through the introduction of the coverage probability model,the dynamic coverage strategy is proposed.The predictive interception points are updated online by maximizing the coverage probability,which aims to achieve successful interception despite variations in target acceleration.Furthermore,a switching strategy of the guidance command is designed for collision avoidance.Simulation results demonstrate that the missile group can cooperatively intercept a highly maneuvering target under the proposed guidance law.展开更多
It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional ...It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and ...To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and transportation modes—harvester waiting for unloading(HWU)and transporter fol-lowing for unloading(TFU)—were proposed,and a harvesting-unloading-transportation(HUT)strategy was defined.By breaking down the main stages of the collaborative operation,designing module-state machines(MSMs),and constructing state-transition chains,a HUT collaborative operation logic frame-work suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine(FSM).This method addresses the multiple-stage,nonsequential,and complex processes in HUT collaborative operations.Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system.The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning,path-tracking control,inter-vehicle communication,collaborative operation control,and implementation control.The cotrans-porter system completed the entire process of harvesting,unloading,and transportation.The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm^(2)·h^(−1) was achieved.This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.展开更多
BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequen...BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.展开更多
High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluct...High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.展开更多
Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improv...Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.展开更多
Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribu...Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c...Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.展开更多
The“return to the Asia-Pacific”policy and the“Asia-Pacific rebalancing”policy during the Obama period marked the germination of the Indo-Pacific strategy of the United States,and since then,the Indo-Pacific strate...The“return to the Asia-Pacific”policy and the“Asia-Pacific rebalancing”policy during the Obama period marked the germination of the Indo-Pacific strategy of the United States,and since then,the Indo-Pacific strategy has been continuously strengthened by the two administrations of Trump and Biden(Ling,2023).In order to stop China from rising,the United States has been trying to draw the ten ASEAN countries which are geographically close to China to American side.However,due to the different national conditions and the different needs of the ten countries,it is difficult for the United States to keep ASEAN’s attitude towards China consistent under the frame of Indo-Pacific strategy.Therefore,this paper will analyze the different attitudes of the ten countries towards China respectively,so as to help China formulate better policies and find better ways to cope with America’s containment of China’s rise and maintain regional and world peace.展开更多
In recent years,robotic arm grasping has become a pivotal task in the field of robotics,with applications spanning from industrial automation to healthcare.The optimization of grasping strategies plays a crucial role ...In recent years,robotic arm grasping has become a pivotal task in the field of robotics,with applications spanning from industrial automation to healthcare.The optimization of grasping strategies plays a crucial role in enhancing the effectiveness,efficiency,and reliability of robotic systems.This paper presents a novel approach to optimizing robotic arm grasping strategies based on deep reinforcement learning(DRL).Through the utilization of advanced DRL algorithms,such as Q-Learning,Deep Q-Networks(DQN),Policy Gradient Methods,and Proximal Policy Optimization(PPO),the study aims to improve the performance of robotic arms in grasping objects with varying shapes,sizes,and environmental conditions.The paper provides a detailed analysis of the various deep reinforcement learning methods used for grasping strategy optimization,emphasizing the strengths and weaknesses of each algorithm.It also presents a comprehensive framework for training the DRL models,including simulation environment setup,the optimization process,and the evaluation metrics for grasping success.The results demonstrate that the proposed approach significantly enhances the accuracy and stability of the robotic arm in performing grasping tasks.The study further explores the challenges in training deep reinforcement learning models for real-time robotic applications and offers solutions for improving the efficiency and reliability of grasping strategies.展开更多
Zeolite-loaded noble metal catalysts have demonstrated excellent performance in addressing cold-start automotive exhaust NOx emissions and catalytic oxidation of VOCs applications.Pd and Pt are the most commonly used ...Zeolite-loaded noble metal catalysts have demonstrated excellent performance in addressing cold-start automotive exhaust NOx emissions and catalytic oxidation of VOCs applications.Pd and Pt are the most commonly used active metals in PNA and VOC catalysts,respectively.However,despite the same metal/zeolite composition,the efficient active sites for PNA and VOC catalysts have been viewed as mainly Pd^(2+) and Pt^(0),respectively,both of which are different from each other.As a result,various methods need to be applied to dope Pd and Pt in zeolitic support respectively for different usages.No matter which type of metal species is needed,the common requirement for both PNA and VOC catalysts is that the metal species should be highly dispersed in zeolite support and stay stable.The purpose of this paper is to review the progress of synthetic means of zeolite-coated noble metals(Pd,Pt,etc.)as effective PNA or VOC catalysts.To give a better understanding of the relationship between efficient metal species and the introduced methods,the species that contributed to the NOx adsorption(PNA)and VOCs deep catalytic oxidation were first summarized and compared.Then,based on the above discussion,the detailed construction strategies for different active sites in PNA and VOC catalysts,respectively,were elaborated in terms of synthetic routes,precursor selection,and zeolite carrier requirements.It is hoped that this will contribute to a better understanding of noble metal adsorption/catalysis in zeolites and provide promising strategies for the design of adsorption/catalysts with high activity,selectivity and stability.展开更多
Utilizing small molecules as markers for specific cells or organs within biosystems is a crucial approach for studying and regulating physiological processes. However, current tagging strategies, due to the presence o...Utilizing small molecules as markers for specific cells or organs within biosystems is a crucial approach for studying and regulating physiological processes. However, current tagging strategies, due to the presence of exposed highly reactive groups, suffer from drawbacks such as low tagging efficiency or insufficient spatial specificity, thereby diminishing their expected effectiveness. Consequently, there is a pressing need to develop a strategy capable of in situ labeling of active groups in response to cellular or in vivo stimuli, ensuring both high tagging efficiency and spatial specificity. In this work, we devised a strategy for releasing aldehyde groups activated by hypochlorous acid(HOCl). Compounds synthesized through this strategy can release the fiuorophore methylene blue(MB) and aldehyde-based compounds upon HOCl activation. Given high reactivity of the released aldehyde group, it can effectively interact with macromolecules in biological systems, facilitating tagging and enabling prolonged imaging. To validate this concept, we further incorporated a naphthalimide structure with stable light emission to create SW-110. SW-110 can specifically respond to in vitro and endogenous HOCl, when release MB, it also releases naphthalimide fiuorophore with highly reactive aldehyde group for tagging within cells. This strategy provides a simple but efficient strategy for proximity tagging in situ.展开更多
ASEAN’s major power balancing strategy refers to the balancing strategy adopted by ASEAN and its member states to seek national and regional security and development by maintaining multi-faceted friendship and impart...ASEAN’s major power balancing strategy refers to the balancing strategy adopted by ASEAN and its member states to seek national and regional security and development by maintaining multi-faceted friendship and impartiality with surrounding major powers.The evolution of this strategy is a process of dynamic adjustment,with ASEAN and its members being the implementing subjects,major powers the objects.展开更多
Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPE)face the challenges of insufficient ionic conductivity and uncontrollable Li dendrite growth.The filler strategy can reinforce anode interface stabili...Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPE)face the challenges of insufficient ionic conductivity and uncontrollable Li dendrite growth.The filler strategy can reinforce anode interface stability,but at the cost of a large filler content(usually more than 10 wt%).This would increase the granular sensation,gravitational separation risk,and electrolyte membrane roughness with the creation of inhomogeneous Li^(+)transport channels between filler and polymer.Herein,we propose a trace filling strategy to address the above problems by introducing an amphoteric molecule L-Cysteine(LCy)as an eco-friendly and low-cost electrolyte additive.Only trace amount of LCy is required and integrated into PEO to form a homogenous,granule-less SPE with enhanced ionic conductivity and dendrite suppression capability.The ionic conductivity increases to 0.54 mS cm^(-1)at 60℃ after introducing only 1 wt%LCy.The amphotericity of LCy with basic–NH_(2)and acidic–COOH groups can promote the dissociation of Li salt and release more free Li ions through Lewis acid-base synergy,as well as the formation of multiple hydrogen bonds between PEO and LCy.The trace LCy additive swiftly leads to the formation of more ionic conductive interphases at both the anode and cathode sides.The composite SPE enables the stable cycling of Li metal for over 1400 h at 0.2 mA cm^(-2)and sustains a maximum current density up to 1.4 mA cm^(-2)in Li Li symmetric cells.The corresponding all-solid-state Li||FeF_(3)full cells exhibit a high specific capacity up to 567 mA h g^(-1)at 0.2 C and stable cycling performance for at least 700 cycles at 0.5 C with a high capacity retention.The excellent interface compatibility also guarantees the achievement of highcapacity Li-Fe-F conversion reaction even under the thin electrolyte membrane thickness and largerscale pouch cell configuration.展开更多
In this article,we make a comment on the recent article by Sun et al,focusing on the advances of neutrophil extracellular traps(NETs)formation in common osteoarticular diseases.Neutrophils are the first line to elimin...In this article,we make a comment on the recent article by Sun et al,focusing on the advances of neutrophil extracellular traps(NETs)formation in common osteoarticular diseases.Neutrophils are the first line to eliminate invading pathogens including fungal and bacterial infections via releasing hydrolytic enzymes and reactive oxygen species.Besides,neutrophils will accumulate at the inflammatory site and release NETs,which are composed of histones,DNA and granular proteins.Traumatic heterotopic ossification(THO)was generally believed to develop through four stages:Inflammation,chondrogenesis,osteogenesis,and bone maturation.Thus,it can be seen that THO was related to inflammation and bone formation.Apart from immune and infectious diseases,recent studies have also shown that NETs play a significant role in the pathogenesis of THO.This article focuses on elaborating the role of NETs in the onset of THO,discussing the existing problems in the current research and outlining future directions.展开更多
Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,thi...Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,this study proposes a strategic digital recovery framework,including revised campaign content,transparent communication through social media,and data-driven customer segmentation based on diverse skincare needs and cultural backgrounds.A PESTLE analysis underscores the importance of digital transformation and rising social consciousness in brand management.Findings suggest that inclusive messaging,precision targeting,and omnichannel digital engagement are key to restoring brand trust and reputation in the digital landscape.展开更多
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
基金supported by the National Natural Science Foundation of China(Nos.61773142,62303136)China Postdoctoral Science Foundation(No.2023M740912)Postdoctoral Fellowship Program of CPSF,China(No.GZC20233447).
文摘In this article,a three-dimensional cooperative guidance problem for highly maneuvering targets is investigated under the assumption of perfect information.Inspired by the coverage strategy,the cooperative guidance problem is decomposed into one-on-one guidance problems against predictive interception points.To expand the coverage area of each missile,these one-on-one guidance problems are formulated as flight path angle tracking problems,and the optimal error dynamics is extended to derive the guidance law analytically.In addition,through the introduction of the coverage probability model,the dynamic coverage strategy is proposed.The predictive interception points are updated online by maximizing the coverage probability,which aims to achieve successful interception despite variations in target acceleration.Furthermore,a switching strategy of the guidance command is designed for collision avoidance.Simulation results demonstrate that the missile group can cooperatively intercept a highly maneuvering target under the proposed guidance law.
文摘It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金the National Key Research and Development Program of China(2021YFD2000600)the National Natural Science Foundation of China(32071914)+1 种基金the Modern Agricultural Industry Technology System of China(CARS-170405)the Key Research and Development Program(Science and Technology Demonstration Project)project of Shandong Province(2022SFGC0202).
文摘To achieve an unmanned rice farm,in this study,a cotransporter system was developed using a tracked rice harvester and transporter for autonomous harvesting,unloading,and transportation.Additionally,two unloading and transportation modes—harvester waiting for unloading(HWU)and transporter fol-lowing for unloading(TFU)—were proposed,and a harvesting-unloading-transportation(HUT)strategy was defined.By breaking down the main stages of the collaborative operation,designing module-state machines(MSMs),and constructing state-transition chains,a HUT collaborative operation logic frame-work suitable for the embedded navigation controller was designed using the concept and method of the finite-state machine(FSM).This method addresses the multiple-stage,nonsequential,and complex processes in HUT collaborative operations.Simulations and field-harvesting experiments were performed to evaluate the applicability of this proposed strategy and system.The experimental results showed that the HUT collaborative operation strategy effectively integrated path planning,path-tracking control,inter-vehicle communication,collaborative operation control,and implementation control.The cotrans-porter system completed the entire process of harvesting,unloading,and transportation.The field-harvesting experiment revealed that a harvest efficiency of 0.42 hm^(2)·h^(−1) was achieved.This study can provide insight into collaborative harvesting and solutions for the harvesting process of unmanned farms.
文摘BACKGROUND Hepatocellular carcinoma ranks among the most prevalent malignant neoplasms.Surgical intervention constitutes a critical therapeutic approach for this condition.Nonetheless,postoperative recovery is frequently influenced by the patient's nutritional status and the quality of nursing care provided.AIM To examine the comprehensive impact of personalized nutritional support and nursing strategies on the postoperative rehabilitation of patients with liver cancer.METHODS In this study,a retrospective comparative analysis was conducted involving 60 post-operative liver cancer patients.The subjects were selected as subjects and divided into two groups based on differing nursing interventions,with each group comprising 30 patients.The control group received standard nutritional support and care,whereas the experimental group received individualized nutritional support and nursing strategies.The study aimed to evaluate the impact of individualized nutrition by comparing the rehabilitation indices,nutritional status,quality of life(QoL),and complication rates between the two groups.RESULTS The results showed that the recovery index of the experimental group was significantly better than that of the control group 2 weeks after surgery,and the average liver function recovery index of the experimental group was 85.significantly higher than that of the control group(73.67±7.19).In terms of nutritional status,the serum albumin level and body weight stabilization rate of the experimental group were also significantly higher than those of the control group,which were 42.33±2.4 g/L and 93.3%,respectively,compared with 36.01±3.85 g/L and 76.7%of the control group.In addition,the average QoL score of the experimental group was 84.66±3.7 points,which was significantly higher than that of the control group(70.92±4.28 points).At the psychological level,the average anxiety score of the experimental group was 1.17±0.29,and the average depression score was 1.47±0.4,which were significantly lower than the 2.26±0.42 and 2.57±0.45 of the control group.This showed that patients in the experimental group were better relieved of anxiety and depression under the individualized nutrition support and nursing strategy.More importantly,the complication rate in the experimental group was only 10%,much lower than the 33.3%in the control group.CONCLUSION Personalized nutritional support and tailored nursing strategies significantly enhance the postoperative rehabilitation of liver cancer patients.Consequently,it is recommended to implement and advocate for these individualized approaches to improve both the recovery outcomes and QoL for these patients.
基金supported by the National Natural Science Foundation of China(Grant No.51976092)。
文摘High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems.
基金supported by the National Natural Science Foundation of China(42167068,22269020)the Gansu Province Higher Education Industry Support Plan Project(2023CYZC-68)the Central Guidance for Local Science and Technology Development Funds Project(YDZX20216200001007)。
文摘Rationally regulating the porosity of hard carbon(HC),especially the closed pores matching the low potential plateau and the ultra-microporous structure suitable for Na+embedding,has been shown to be the key to improving the sodium storage performance and initial coulombic efficiency(ICE).However,the preparation of such HC materials with specific pore structures still faces great challenges.Herein,a simple pre-oxidation strategy is employed to construct abundant closed ultra-microporous structures in soy protein powder-derived HC material,achieving a significant improvement in its ICE and platform capacity.The pre-oxidation process promotes the cross-linking degree of the soy protein,thereby hindering the directional growth of graphite domains during the carbonization process.The optimized HC exhibits ultra-high platform capacity(329 mAh g^(-1))and considerable energy density(148.5 Wh kg^(-1)).Based on the ex-situ Raman and X-ray photoelectron spectroscopy characterization results,the excellent sodium storage capacity of the HC material is attributed to the synergistic effect of adsorption-intercalation/filling.The presented work provides novel insights into the synthesis of other biomass-derived HC materials with abundant closed ultra-micro pores.
基金supported in part by the National Nat-ural Science Foundation of China(52177110)Key Pro-gram of the National Natural Science Foundation of China(U22B20106,U2142206)+2 种基金Shenzhen Science and Technology Program(JCYJ20210324131409026)the Science and Technology Project of the State Grid Corpo-ration of China(5200-202319382A-2-3-XG)State Grid Zhejiang Elctric Power Co.,Ltd.Science and Tech-nology Project(B311DS24001A).
文摘Typhoons can cause large-area blackouts or partial outages of distribution networks.We define a partial outage state in the distribution network as a gray state and propose a gray-start strategy and two-stage distribution network emergency recovery framework.A phase-space reconstruction and stacked integrated model for predicting wind and photovoltaic generation during typhoon disasters is proposed in the first stage.This provides guidance for second-stage post-disaster emergency recovery scheduling.The emergency recovery scheduling model is established in the second stage,and this model is supported by a thermal power-generating unit,mobile emergency generators,and distributed generators.Distributed generation includes wind power generation,photovoltaics,fuel cells,etc.Simultaneously,we con-sider the gray-start based on the pumped storage unit to be an important first step in the emergency recovery strategy.This model is val-idated on the improved IEEE 33 node system,which utilizes data from the 2022 super typhoon“Muifa”in Zhoushan,Zhejiang,China.Simulations indicate the superiority of a gray start with a pumped storage unit and the proposed emergency recovery strategy.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
基金supported by the National Natural Science Foundation of China(52164028,52274297)the Start-up Research Foundation of Hainan University(KYQD(ZR)20008,KYQD(ZR)21125,KYQD(ZR)23169))+1 种基金Collaborative Innovation Center of Marine Science and Technology of Hainan University(XTCX2022HYC14)Innovative Research Project for Postgraduate Students in Hainan Province(Qhyb2024-95).
文摘Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity.
文摘The“return to the Asia-Pacific”policy and the“Asia-Pacific rebalancing”policy during the Obama period marked the germination of the Indo-Pacific strategy of the United States,and since then,the Indo-Pacific strategy has been continuously strengthened by the two administrations of Trump and Biden(Ling,2023).In order to stop China from rising,the United States has been trying to draw the ten ASEAN countries which are geographically close to China to American side.However,due to the different national conditions and the different needs of the ten countries,it is difficult for the United States to keep ASEAN’s attitude towards China consistent under the frame of Indo-Pacific strategy.Therefore,this paper will analyze the different attitudes of the ten countries towards China respectively,so as to help China formulate better policies and find better ways to cope with America’s containment of China’s rise and maintain regional and world peace.
文摘In recent years,robotic arm grasping has become a pivotal task in the field of robotics,with applications spanning from industrial automation to healthcare.The optimization of grasping strategies plays a crucial role in enhancing the effectiveness,efficiency,and reliability of robotic systems.This paper presents a novel approach to optimizing robotic arm grasping strategies based on deep reinforcement learning(DRL).Through the utilization of advanced DRL algorithms,such as Q-Learning,Deep Q-Networks(DQN),Policy Gradient Methods,and Proximal Policy Optimization(PPO),the study aims to improve the performance of robotic arms in grasping objects with varying shapes,sizes,and environmental conditions.The paper provides a detailed analysis of the various deep reinforcement learning methods used for grasping strategy optimization,emphasizing the strengths and weaknesses of each algorithm.It also presents a comprehensive framework for training the DRL models,including simulation environment setup,the optimization process,and the evaluation metrics for grasping success.The results demonstrate that the proposed approach significantly enhances the accuracy and stability of the robotic arm in performing grasping tasks.The study further explores the challenges in training deep reinforcement learning models for real-time robotic applications and offers solutions for improving the efficiency and reliability of grasping strategies.
基金supported by Zhongtian Iron and Steel-University of Science and Technology Beijing Youth Science and Technology Innovation Fund(No.FZTNTC2024050005)National Engineering Laboratory for Mobile Source Emission Control Technology,China(No.NELMS2020A07)The Fundamental Research Funds for the Central Universities,China(No.FRF-AT-20-12)。
文摘Zeolite-loaded noble metal catalysts have demonstrated excellent performance in addressing cold-start automotive exhaust NOx emissions and catalytic oxidation of VOCs applications.Pd and Pt are the most commonly used active metals in PNA and VOC catalysts,respectively.However,despite the same metal/zeolite composition,the efficient active sites for PNA and VOC catalysts have been viewed as mainly Pd^(2+) and Pt^(0),respectively,both of which are different from each other.As a result,various methods need to be applied to dope Pd and Pt in zeolitic support respectively for different usages.No matter which type of metal species is needed,the common requirement for both PNA and VOC catalysts is that the metal species should be highly dispersed in zeolite support and stay stable.The purpose of this paper is to review the progress of synthetic means of zeolite-coated noble metals(Pd,Pt,etc.)as effective PNA or VOC catalysts.To give a better understanding of the relationship between efficient metal species and the introduced methods,the species that contributed to the NOx adsorption(PNA)and VOCs deep catalytic oxidation were first summarized and compared.Then,based on the above discussion,the detailed construction strategies for different active sites in PNA and VOC catalysts,respectively,were elaborated in terms of synthetic routes,precursor selection,and zeolite carrier requirements.It is hoped that this will contribute to a better understanding of noble metal adsorption/catalysis in zeolites and provide promising strategies for the design of adsorption/catalysts with high activity,selectivity and stability.
基金financially supported by the National Natural Science Foundation of China (Nos. 22177019, 22377010, 22371038)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (No. KF2206)。
文摘Utilizing small molecules as markers for specific cells or organs within biosystems is a crucial approach for studying and regulating physiological processes. However, current tagging strategies, due to the presence of exposed highly reactive groups, suffer from drawbacks such as low tagging efficiency or insufficient spatial specificity, thereby diminishing their expected effectiveness. Consequently, there is a pressing need to develop a strategy capable of in situ labeling of active groups in response to cellular or in vivo stimuli, ensuring both high tagging efficiency and spatial specificity. In this work, we devised a strategy for releasing aldehyde groups activated by hypochlorous acid(HOCl). Compounds synthesized through this strategy can release the fiuorophore methylene blue(MB) and aldehyde-based compounds upon HOCl activation. Given high reactivity of the released aldehyde group, it can effectively interact with macromolecules in biological systems, facilitating tagging and enabling prolonged imaging. To validate this concept, we further incorporated a naphthalimide structure with stable light emission to create SW-110. SW-110 can specifically respond to in vitro and endogenous HOCl, when release MB, it also releases naphthalimide fiuorophore with highly reactive aldehyde group for tagging within cells. This strategy provides a simple but efficient strategy for proximity tagging in situ.
文摘ASEAN’s major power balancing strategy refers to the balancing strategy adopted by ASEAN and its member states to seek national and regional security and development by maintaining multi-faceted friendship and impartiality with surrounding major powers.The evolution of this strategy is a process of dynamic adjustment,with ASEAN and its members being the implementing subjects,major powers the objects.
基金supported by National Natural Science Foundation of China(52372249 and 52102329)the support from the Program of Shanghai Academic Research Leader(21XD1424400)。
文摘Polyethylene oxide(PEO)-based solid-state polymer electrolytes(SPE)face the challenges of insufficient ionic conductivity and uncontrollable Li dendrite growth.The filler strategy can reinforce anode interface stability,but at the cost of a large filler content(usually more than 10 wt%).This would increase the granular sensation,gravitational separation risk,and electrolyte membrane roughness with the creation of inhomogeneous Li^(+)transport channels between filler and polymer.Herein,we propose a trace filling strategy to address the above problems by introducing an amphoteric molecule L-Cysteine(LCy)as an eco-friendly and low-cost electrolyte additive.Only trace amount of LCy is required and integrated into PEO to form a homogenous,granule-less SPE with enhanced ionic conductivity and dendrite suppression capability.The ionic conductivity increases to 0.54 mS cm^(-1)at 60℃ after introducing only 1 wt%LCy.The amphotericity of LCy with basic–NH_(2)and acidic–COOH groups can promote the dissociation of Li salt and release more free Li ions through Lewis acid-base synergy,as well as the formation of multiple hydrogen bonds between PEO and LCy.The trace LCy additive swiftly leads to the formation of more ionic conductive interphases at both the anode and cathode sides.The composite SPE enables the stable cycling of Li metal for over 1400 h at 0.2 mA cm^(-2)and sustains a maximum current density up to 1.4 mA cm^(-2)in Li Li symmetric cells.The corresponding all-solid-state Li||FeF_(3)full cells exhibit a high specific capacity up to 567 mA h g^(-1)at 0.2 C and stable cycling performance for at least 700 cycles at 0.5 C with a high capacity retention.The excellent interface compatibility also guarantees the achievement of highcapacity Li-Fe-F conversion reaction even under the thin electrolyte membrane thickness and largerscale pouch cell configuration.
文摘In this article,we make a comment on the recent article by Sun et al,focusing on the advances of neutrophil extracellular traps(NETs)formation in common osteoarticular diseases.Neutrophils are the first line to eliminate invading pathogens including fungal and bacterial infections via releasing hydrolytic enzymes and reactive oxygen species.Besides,neutrophils will accumulate at the inflammatory site and release NETs,which are composed of histones,DNA and granular proteins.Traumatic heterotopic ossification(THO)was generally believed to develop through four stages:Inflammation,chondrogenesis,osteogenesis,and bone maturation.Thus,it can be seen that THO was related to inflammation and bone formation.Apart from immune and infectious diseases,recent studies have also shown that NETs play a significant role in the pathogenesis of THO.This article focuses on elaborating the role of NETs in the onset of THO,discussing the existing problems in the current research and outlining future directions.
文摘Dove’s 2017 advertising incident,which sparked widespread debate regarding perceived cultural insensitivity,highlighted a disconnect between the brand’s“Real Beauty”positioning and public reception.In response,this study proposes a strategic digital recovery framework,including revised campaign content,transparent communication through social media,and data-driven customer segmentation based on diverse skincare needs and cultural backgrounds.A PESTLE analysis underscores the importance of digital transformation and rising social consciousness in brand management.Findings suggest that inclusive messaging,precision targeting,and omnichannel digital engagement are key to restoring brand trust and reputation in the digital landscape.