Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive s...Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named VO_(x)/TiO_(2)/n^(++)Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(>10^(2))and long-term stability.The tremendous improvement in the stability of the VO_(x)/TiO_(2)/n^(++)Si device compared with the Cu/VOx/n^(++)Si device is due to the p-i-n structure of VO_(x)/TiO_(2)/n^(++)Si.The switching mechanism of the VO_(x)/TiO_(2)/n^(++)Si device is attributed to the growth and annihilation of Cu conductive filaments.展开更多
We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures...We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures(250℃)using these approaches.Combustion synthesis reduces the energy required for oxide conversion,thus accelerating the decomposition of organic ligands in the UV-exposed area,and promoting the formation of metal-oxygen networks,contributing to patterning.Thermal analysis confirmed a reduction in the conversion temperature of combustion precursors,and the prepared combustion ZrO_(2)films exhibited a high proportion of metal-oxygen bonding that constitutes the oxide lattice,along with an amorphous phase.Furthermore,the synergistic effect of combustion synthesis and UV/O_(3)-assisted photochemical activation resulted in patterned ZrO_(2)films forming even more complete metal-oxygen networks.RRAM devices fabricated with patterned ZrO_(2)films using combustion synthesis exhibited excellent switching characteristics,including a narrow resistance distribution,endurance of 103 cycles,and retention for 105 s at 85℃,despite low-temperature annealing.Combustion synthesis not only enables the formation of high-quality metal oxide films with low external energy but also facilitates improved photopatterning.展开更多
Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and g...Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.展开更多
In this work,two process-variation-tolerant schemes for a current-mode sense amplifier(CSA)of RRAM were proposed:(1)hybrid read reference generator(HRRG)that tracks process-voltage-temperature(PVT)variations and solve...In this work,two process-variation-tolerant schemes for a current-mode sense amplifier(CSA)of RRAM were proposed:(1)hybrid read reference generator(HRRG)that tracks process-voltage-temperature(PVT)variations and solve the nonlinear issue of the RRAM cells;(2)a two-stage offset-cancelled current sense amplifier(TSOCC-SA)with only two capacitors achieves a double sensing margin and a high tolerance of device mismatch.The simulation results in 28 nm CMOS technology show that the HRRG can provide a read reference that tracks PVT variations and solves the nonlinear issue of the RRAM cells.The proposed TSOCC-SA can tolerate over 64% device mismatch.展开更多
阻变存储器(resistive random access memory,RRAM)作为未来一种高性能的非挥发性存储器,具有面积小、操作电压低、兼容性好等特点.但是,在高集成存储器和频繁的写操作下,热串扰问题会严重影响RRAM的保持特性.严重情况下,热串扰问题甚...阻变存储器(resistive random access memory,RRAM)作为未来一种高性能的非挥发性存储器,具有面积小、操作电压低、兼容性好等特点.但是,在高集成存储器和频繁的写操作下,热串扰问题会严重影响RRAM的保持特性.严重情况下,热串扰问题甚至会造成一系列的错误翻转.因此,本文引入了一种高效的奇偶重排编码算法(parity rearrangement coding scheme,PRCoder)来有效缓解热串扰对RRAM的影响,并在算法层和电路层上分别进行设计与仿真.试验结果表明,PRCoder算法平均降低了32.7%的误翻转率,并同时只会在每一个存储行带来1bit的额外开销.此外,PRCoder仅仅带来0.3%的性能增加和0.008%的面积增加.展开更多
基金National Natural Science Foundation of China(No.61376017)。
文摘Vanadium oxide(VO_(x))has garnered significant attention in the realm of resistive random-access memory(RRAM)owing to its outstanding resistive switching characteristics.However,the ambiguous mechanisms of resistive switching and inferior stability hinder its practical applications.Herein,an RRAM named VO_(x)/TiO_(2)/n^(++)Si device is prepared.It displays bipolar resistive switching behavior and shows superior cycle endurance(>200),a significantly high on/off ratio(>10^(2))and long-term stability.The tremendous improvement in the stability of the VO_(x)/TiO_(2)/n^(++)Si device compared with the Cu/VOx/n^(++)Si device is due to the p-i-n structure of VO_(x)/TiO_(2)/n^(++)Si.The switching mechanism of the VO_(x)/TiO_(2)/n^(++)Si device is attributed to the growth and annihilation of Cu conductive filaments.
基金supported by the National Research Founda-tion of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(Nos.RS-2023-00251283,RS-2023-00257003,and 2022M3D1A2083618)supported by the DGIST R&D Program of the MSIT(No.23-CoE-BT-03).
文摘We have realized efficient photopatterning and high-quality ZrO_(2)films through combustion synthesis and manufactured resistive random access memory(RRAM)devices with excellent switching stability at low temperatures(250℃)using these approaches.Combustion synthesis reduces the energy required for oxide conversion,thus accelerating the decomposition of organic ligands in the UV-exposed area,and promoting the formation of metal-oxygen networks,contributing to patterning.Thermal analysis confirmed a reduction in the conversion temperature of combustion precursors,and the prepared combustion ZrO_(2)films exhibited a high proportion of metal-oxygen bonding that constitutes the oxide lattice,along with an amorphous phase.Furthermore,the synergistic effect of combustion synthesis and UV/O_(3)-assisted photochemical activation resulted in patterned ZrO_(2)films forming even more complete metal-oxygen networks.RRAM devices fabricated with patterned ZrO_(2)films using combustion synthesis exhibited excellent switching characteristics,including a narrow resistance distribution,endurance of 103 cycles,and retention for 105 s at 85℃,despite low-temperature annealing.Combustion synthesis not only enables the formation of high-quality metal oxide films with low external energy but also facilitates improved photopatterning.
基金supported financially by the National Key Research and Development Program of China(Grant No.2023YFB4402301)the National Science Fund for Distinguished Young Scholars(Grant No.52025022)+3 种基金the National Natural Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,11974072,52372137,and 52272140)the“111”Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Grant Nos.2412022QD036 and 2412023YQ004)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC,and 20210509045RQ)。
文摘Transient memories,which can physically disappear without leaving traceable remains over a period of normal operation,are attracting increasing attention for potential applications in the fields of data security and green electronics.Resistive random access memory(RRAM)is a promising candidate for next-generation memory.In this context,biocompatible l-carrageenan(l-car),extracted from natural seaweed,is introduced for the fabrication of RRAM devices(Ag/l-car/Pt).Taking advantage of the complexation processes between the functional groups(C–O–C,C–O–H,et al.)and Ag metal ions,a lower migration barrier of Ag ions and a high-speed switching(22.2 ns for SET operation/26 ns for RESET operation)were achieved,resulting in an ultralow power consumption of 56 fJ.And the prepared Ag/l-car/Pt RRAM devices also revealed the capacities of multilevel storage and flexibility.In addition,thanks to the hydrophilic groups of l-car molecule,the RRAM devices can be rapidly dissolved in deionized(DI)water within 13 minutes,showing excellent transient characteristics.This work demonstrates that l-car based RRAM devices have great potential for applications in secure storage applications,flexible electronics and transient electronics.
基金supported in part by the National Key R&D Program of China under Grant No.2019YFB2204800in part by the Major Scientific Research Project of Zhejiang Lab(Grant No.2019KC0AD02)+1 种基金in part by the National Natural Science Foundation of China under Grants 61904200the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDB44000000。
文摘In this work,two process-variation-tolerant schemes for a current-mode sense amplifier(CSA)of RRAM were proposed:(1)hybrid read reference generator(HRRG)that tracks process-voltage-temperature(PVT)variations and solve the nonlinear issue of the RRAM cells;(2)a two-stage offset-cancelled current sense amplifier(TSOCC-SA)with only two capacitors achieves a double sensing margin and a high tolerance of device mismatch.The simulation results in 28 nm CMOS technology show that the HRRG can provide a read reference that tracks PVT variations and solves the nonlinear issue of the RRAM cells.The proposed TSOCC-SA can tolerate over 64% device mismatch.