In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div...In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system.展开更多
In this paper,we study the quasilinear Schrödinger-Poisson system with critical Sobolev exponent {-△_(p)u+|u|^(p-2)u=|u|^p^(*-2)u+ph(x)|u|^(q-2)u in R^(3),-△Φt(x)|u|^(p) in R^(3) where μ>0,3/2<p<3,p...In this paper,we study the quasilinear Schrödinger-Poisson system with critical Sobolev exponent {-△_(p)u+|u|^(p-2)u=|u|^p^(*-2)u+ph(x)|u|^(q-2)u in R^(3),-△Φt(x)|u|^(p) in R^(3) where μ>0,3/2<p<3,p≤q<p^(3)=3p/3-p and △_(p)u=div(|▽u|^(p-2)▽u)Under certain assumptions on the functions l and h, we employ the mountain pass theorem to establish the existence of positive solutions for this system.展开更多
In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary condi...In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary conditions having parameter in two cases f(O)=0 and f(0)>0 by using upper and lower solution method,where λ>0 is a parameter,f∈C^(2)([0,∞),R)is monotonically increasing and lim_(μ→1)^(f(u)/1-u=0,h∈C^(1)([0,1],(0,∞))is a nonincreasing function and h(t)>1.展开更多
In this paper,by using the discrete Arzelá-Ascoli Lemma and the fixed-point theorem in cones,we discuss the existence of positive solutions of the following second order discrete Sturm-Liouville boundary value pr...In this paper,by using the discrete Arzelá-Ascoli Lemma and the fixed-point theorem in cones,we discuss the existence of positive solutions of the following second order discrete Sturm-Liouville boundary value problem on infinite intervals■where Δu(x)=u(x+1)-u(x)is the forward difference operator,■is continuous,a>0,B and C are nonnegative constants.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam wh...In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive...This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive solutions for these stable_diffusion models under some conditions.展开更多
Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of ...Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam w...By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.展开更多
By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations ...By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.展开更多
We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone non...We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate展开更多
A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. B...A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. By using the implicit function theorem and the Lyapunov- Schmidt reduction method, the existence of the positive solutions bifurcating from the trivial solution is obtained. Furthermore, the stability of the bifurcating positive solutions is also investigated by analyzing the associated characteristic equation.展开更多
In this paper an existence and uniqueness theorem of positive solutions to a class of semilinear elliptic systems is proved. Also, a necessary condition for the existence of the positive solution is obtained. As the a...In this paper an existence and uniqueness theorem of positive solutions to a class of semilinear elliptic systems is proved. Also, a necessary condition for the existence of the positive solution is obtained. As the application of the main theorem, two examples are given.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金supported by the Natural Science Foundation of Gansu Province(No.24JRRP001)。
文摘In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system.
文摘In this paper,we study the quasilinear Schrödinger-Poisson system with critical Sobolev exponent {-△_(p)u+|u|^(p-2)u=|u|^p^(*-2)u+ph(x)|u|^(q-2)u in R^(3),-△Φt(x)|u|^(p) in R^(3) where μ>0,3/2<p<3,p≤q<p^(3)=3p/3-p and △_(p)u=div(|▽u|^(p-2)▽u)Under certain assumptions on the functions l and h, we employ the mountain pass theorem to establish the existence of positive solutions for this system.
基金Supported by the National Natural Science Foundation of China(12361040)。
文摘In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary conditions having parameter in two cases f(O)=0 and f(0)>0 by using upper and lower solution method,where λ>0 is a parameter,f∈C^(2)([0,∞),R)is monotonically increasing and lim_(μ→1)^(f(u)/1-u=0,h∈C^(1)([0,1],(0,∞))is a nonincreasing function and h(t)>1.
基金Supported by the National Natural Science Foundation of China(Grant No.12361040)the Department of Education University Innovation Fund of Gansu Province(Grant No.2021A-006)。
文摘In this paper,by using the discrete Arzelá-Ascoli Lemma and the fixed-point theorem in cones,we discuss the existence of positive solutions of the following second order discrete Sturm-Liouville boundary value problem on infinite intervals■where Δu(x)=u(x+1)-u(x)is the forward difference operator,■is continuous,a>0,B and C are nonnegative constants.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
文摘We prove the existence of a positive solution to the problem-Δu=a(x)f(u), x∈Ω, u(x)=0,x∈Ω,where Ω is a bounded domain in R n with smooth boundary, a(x) is allowed to change sign.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘In this paper we investigate the existence of positive solution for a class of fourth_order superlinear semipositone eigenvalue problems. This class of problems usually describes the deformation of the elastic beam whose both end_points are fixed.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
文摘This paper is concerned with a class of degenerate and nondegenerate stable diffusion models.By using the upper and lower solution method and Schauder fixed point principle,the author studies the existence of positive solutions for these stable_diffusion models under some conditions.
文摘Several existence theorems were established for a nonlinear fourth-order two-point boundary value problem with second derivative by using Leray-Schauder fixed point theorem, equivalent norm and technique on system of integral equations. The main conditions of our results are local. In other words, the existence of the solution can be determined by considering the height of the nonlinear term on a bounded set. This class of problems usually describes the equilibrium state of an elastic beam which is simply supported at both ends.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
文摘By using the degree theory on cone an existence theorem of positive solution for a class of fourth-order two-point BVP's is obtained. This class of BVP's usually describes the deformation of the elastic beam with both fixed end-points.
基金SuppoSed by the NSF of Anhui Provincial Education Depaxtment(KJ2012A265,KJ2012B187)
文摘By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.
基金supported by NSF Grant DMS-0604638Li partially supported by NSF Grant DMS-0401174
文摘We classify all positive solutions for the following integral system:{ui(x)=∫Rn1/│x-y│^n-α fi(u(y))dy,x∈R^n,i=1,…,m,0〈α〈n,and u(x)=(u1(x),u2(x)…,um(x)).Here fi(u), 1 ≤ i ≤m, monotone nondecreasing are real-valued functions of homogeneous degree n+α/n-α and are monotone nondecreasing with respect to all the independent variables U1, u2, ..., urn.In the special case n ≥ 3 and α = 2. we show that the above system is equivalent to thefollowing elliptic PDE system:This system is closely related to the stationary SchrSdinger system with critical exponents for Bose-Einstein condensate
基金Supported by the National Natural Science Foundation of China (10961017)"Qinglan" Talent Programof Lanzhou Jiaotong University (QL-05-20A)
文摘A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. By using the implicit function theorem and the Lyapunov- Schmidt reduction method, the existence of the positive solutions bifurcating from the trivial solution is obtained. Furthermore, the stability of the bifurcating positive solutions is also investigated by analyzing the associated characteristic equation.
基金The project supported by NNSF of China(10071080)
文摘In this paper an existence and uniqueness theorem of positive solutions to a class of semilinear elliptic systems is proved. Also, a necessary condition for the existence of the positive solution is obtained. As the application of the main theorem, two examples are given.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.