期刊文献+

Multiplicity and Concentration of Positive Solutions for a Quasilinear Schrödinger-Poisson System with Critical Nonlinearity

临界的拟线性Schrödinger-Poisson系统正解的多重性和集中性
在线阅读 下载PDF
导出
摘要 In this paper,we study the following Schrödinger-Poisson system{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p)in R^(3),whereε>0 is a parameter,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R is a potential function with a local minimum and f is subcritical growth.Based on the penalization method,Nehari manifold techniques and Ljusternik-Schnirelmann category theory,we obtain the multiplicity and concentration of positive solutions to the above system. 本文考虑以下薛定谔-泊松系统{-ε^(p)Δ_(p)u+V(x)|u|^(p-2)u+ϕ|u|^(p-2)u=f(u)+|u|^(p*-2)u in R^(3),-ε^(2)Δϕ=|u|^(p),其中ε>0是一个参量,3/2<p<3,Δ_(p)u=div(|∇u|^(p-2)∇u),p^(*)=3p/3-p,V:R^(3)→R是满足局部极小条件的位势,f是次临界增长的.基于罚方法、Nehari流形技巧和Ljusternik Schnirelmann畴数理论,我们得到正解的多重性和集中性.
作者 ZHANG Weiqiang WEN Yanyun 张伟强;温彦云(甘肃民族师范学院数学科学学院,合作747000)
出处 《数学理论与应用》 2025年第1期1-24,共24页 Mathematical Theory and Applications
基金 supported by the Natural Science Foundation of Gansu Province(No.24JRRP001)。
关键词 Schrödinger-Poisson system Positive solution Ljusternik-Schnirelmann category theory Critical growth P-LAPLACIAN Schrödinger-Poisson系统 正解 Ljusternik-Schnirelmann畴数理论 临界增长 p-拉普拉斯算子
  • 相关文献

二级参考文献18

  • 1Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal, 1994, 122:519-543.
  • 2Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point thoery and application. J Func Anal, 1973, 14:349-381.
  • 3Brezis H. Nonlinear equation involving the critical Sobolev exponent-survey and perspectives//Crandall M C, et al, ed. Directions in Partial Differential Equations. New York: Academic Press Inc, 1987:17-36.
  • 4Brezis H, Lieb E H. A relation between pointwise convergent of functions and convergent of functional. Proc Amer Math Soc, 1983, 88:486-490.
  • 5Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983, 36:437-477.
  • 6Benci V, Micheletti A M. Visetti D. An eigenvalue problem for a quasilinear elliptic field equation. J Differential Equations, 2002, 184(2): 299-320.
  • 7Cherfils L, Ii'yasov Y. On the stationary solutions of generalized reaction diffusion equation with p&q- Laplacian. Comm Pure Appl Anal, 2005, 4(1): 9-22.
  • 8Azorero Garcia J, Aloson Peral I. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans Amer Math Soc, 1991, 323:877-895.
  • 9Ladyzenskaya O, Uralsteva N. Linear and Quasilinear Elliptic Partial Differential Equations. New York: Academic Press, 1968.
  • 10Li G B. The existence of nontrivial solutions of quasilinear elliptic PDE of variational type [D]. Wuhan: Wuhan Univ , 1987.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部