期刊文献+
共找到783篇文章
< 1 2 40 >
每页显示 20 50 100
Do earthquakes shake the stock market? Causal inferences from Turkey's earthquake
1
作者 Khalid Khan Javier Cifuentes-Faura Muhammad Shahbaz 《Financial Innovation》 2024年第1期227-245,共19页
This study’s main purpose is to use Bayesian structural time-series models to investigate the causal effect of an earthquake on the Borsa Istanbul Stock Index.The results reveal a significant negative impact on stock... This study’s main purpose is to use Bayesian structural time-series models to investigate the causal effect of an earthquake on the Borsa Istanbul Stock Index.The results reveal a significant negative impact on stock market value during the post-treatment period.The results indicate rapid divergence from counterfactual predictions,and the actual stock index is lower than would have been expected in the absence of an earthquake.The curve of the actual stock value and the counterfactual prediction after the earthquake suggest a reconvening pattern in the stock market when the stock market resumes its activities.The cumulative impact effect shows a negative effect in relative terms,as evidenced by the decrease in the BIST-100 index of -30%.These results have significant implications for investors and policymakers,emphasizing the need to prepare for natural disasters to minimize their adverse effects on stock market valuations. 展开更多
关键词 Stock market EARTHQUAKE Causal inference Bayesian structural time-series Counterfactual predicting
在线阅读 下载PDF
Exact Distribution of Difference of Two Sample Proportions and Its Inferences 被引量:1
2
作者 Keshab R. Dahal Mohamed Amezziane 《Open Journal of Statistics》 2020年第3期363-374,共12页
Comparing two population proportions using confidence interval could be misleading in many cases, such </span><span style="font-family:Verdana;">as</span><span style="font-family:Ve... Comparing two population proportions using confidence interval could be misleading in many cases, such </span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> the sample size </span><span style="font-family:Verdana;">being</span><span style="font-family:Verdana;"> small and the test </span><span style="font-family:Verdana;">being</span><span style="font-family:Verdana;"> based on normal approximation. In this case, the only </span><span style="font-family:Verdana;">one</span><span style="font-family:Verdana;"> option that we have is to collect a large sample. Unfortunately, the large sample might not be possible. One example is a person suffering from a rare disease. The main purpose of this journal is to derive a closed formula for the exact distribution of the difference between two independent sample proportions, and use it to perform related inferences such as a confidence interval, regardless of the sample sizes and compare with the existing Wald, Agresti-Caffo </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Score. In this journal, we have derived a closed formula for the exact distribution of the difference between two independent sample proportions. This distribution doesn’t need any </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and can be used to perform inferences such </span><span style="font-family:Verdana;">as:</span><span style="font-family:Verdana;"> a hypothesis test for two population proportions, regardless of the nature of the distribution and the sample sizes. We claim </span><span style="font-family:Verdana;">that</span><span style="font-family:Verdana;"> exact distribution has the </span><span style="font-family:Verdana;">least</span><span style="font-family:Verdana;"> confidence width among Wald, Agresti-Caffo </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Score, so it is suitable for inferences of the difference between the population proportion regardless of sample size. 展开更多
关键词 Statistical inferences Exact Distribution Difference of Sample Proportions
在线阅读 下载PDF
A Theoretical Model of L2 Readers' Causal Inferences in Narrative Comprehension
3
作者 Correspondence: Yu Yi China Foreign Trade Guangzhou Exhibition CorP.,11 7, LiuHua Road, Guangzhou, PR. China 510014 《现代外语》 CSSCI 北大核心 1999年第4期397-398,共2页
Withincreasingawarenessoftheimportanceofreadingprocessitself,researchers(Fletcher&Bloom,1988;VandenBroek,1990;Horiba,1990,1993,1996,etc)showsteadyinterestintheinvestigationofinferences,particularly,thecausalinfere... Withincreasingawarenessoftheimportanceofreadingprocessitself,researchers(Fletcher&Bloom,1988;VandenBroek,1990;Horiba,1990,1993,1996,etc)showsteadyinterestintheinvestigationofinferences,particularly,thecausalinferencesinnarrativecomprehensioninrecentd... 展开更多
关键词 NARRATIVE COMPREHENSION CAUSAL inferences language PROFICIENCY story schema
在线阅读 下载PDF
A Preliminary Analysis on Inferences in Discourse Comprehension
4
作者 冯政 《海外英语》 2011年第6X期355-357,共3页
By analysing the nature of inference and discourse comprehension as well as the role and classification of inference, it is concluded that inference is a productive mode of thinking that decides from something known o... By analysing the nature of inference and discourse comprehension as well as the role and classification of inference, it is concluded that inference is a productive mode of thinking that decides from something known or assumed, and the inference in discourse works out the underlying propositions, necessary or elaborative, and the unsaid speaker's meaning. To derive a good inference, one has to make use of world knowledge and share some experiences with the speaker. 展开更多
关键词 ANALYSIS INFERENCE DISCOURSE COMPREHENSION
在线阅读 下载PDF
Interpreting forest diversity-productivity relationships:volume values,disturbance histories and alternative inferences
5
作者 Douglas Sheil Frans Bongers 《Forest Ecosystems》 SCIE CSCD 2020年第1期64-75,共12页
Understanding the relationship between stand-level tree diversity and productivity has the potential to inform the science and management of forests.History shows that plant diversity-productivity relationships are ch... Understanding the relationship between stand-level tree diversity and productivity has the potential to inform the science and management of forests.History shows that plant diversity-productivity relationships are challenging to interpret—and this remains true for the study of forests using non-experimental field data.Here we highlight pitfalls regarding the analyses and interpretation of such studies.We examine three themes:1)the nature and measurement of ecological productivity and related values;2)the role of stand history and disturbance in explaining forest characteristics;and 3)the interpretation of any relationship.We show that volume production and true productivity are distinct,and neither is a demonstrated proxy for economic values.Many stand characteristics,including diversity,volume growth and productivity,vary intrinsically with succession and stand history.We should be characterising these relationships rather than ignoring or eliminating them.Failure to do so may lead to misleading conclusions.To illustrate,we examine the study which prompted our concerns—Liang et al.(Science 354:aaf8957,2016)—which developed a sophisticated global analysis to infer a worldwide positive effect of biodiversity(tree species richness)on“forest productivity”(stand level wood volume production).Existing data should be able to address many of our concerns.Critical evaluations will improve understanding. 展开更多
关键词 CAUSATION Correlation DIVERSITY Inference PRODUCTIVITY Richness Tree-growth Wood-density
在线阅读 下载PDF
Development of a Topic Providing System with Inferences of Behaviors from Daily Life
6
作者 Seiji Suzuki Go Tanaka +5 位作者 Chiaki Doi Tomohiro Nakagawa Hiroshi Inamura Ken Ohta Tadanori Mizuno Hiroshi Mineno 《Computer Technology and Application》 2013年第3期144-152,共9页
Face-to-face communication is very important skill to share intentions. However, many people in the modem world feel that they are deficient in face-to-face communication. So, we feel that it is necessary to support t... Face-to-face communication is very important skill to share intentions. However, many people in the modem world feel that they are deficient in face-to-face communication. So, we feel that it is necessary to support their face-to-face communication using information technologies. We have developed a topic-providing system that can infer behaviors from daily life and provides users with information about their conversation partner, including that on his hometown, hobbies and life logs when face-to-face communication is initiated. The life logs are details about a user's life, and are generated using a Bayesian network on the basis of sensor data provided by our system. This system enables users to access other users' information of behaviors from the accumulated life logs and it utilizes this infbrmation to generate topics for conversation. We evaluated the accuracy with which proposal system inferred behaviors to confirm whether exact life log generation is possible. And we also evaluated the proposed system by administering a questionnaire to confirm whether the proposed system can support face-to-face communication. 展开更多
关键词 Face-to-face communication support inference of behaviors Bayesian network life log sensor network.
在线阅读 下载PDF
Application of Fuzzy Inference System in Gas Turbine Engine Fault Diagnosis Against Measurement Uncertainties 被引量:1
7
作者 Shuai Ma Yafeng Wu +1 位作者 Zheng Hua Linfeng Gou 《Chinese Journal of Mechanical Engineering》 2025年第1期62-83,共22页
Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel perf... Robustness against measurement uncertainties is crucial for gas turbine engine diagnosis.While current research focuses mainly on measurement noise,measurement bias remains challenging.This study proposes a novel performance-based fault detection and identification(FDI)strategy for twin-shaft turbofan gas turbine engines and addresses these uncertainties through a first-order Takagi-Sugeno-Kang fuzzy inference system.To handle ambient condition changes,we use parameter correction to preprocess the raw measurement data,which reduces the FDI’s system complexity.Additionally,the power-level angle is set as a scheduling parameter to reduce the number of rules in the TSK-based FDI system.The data for designing,training,and testing the proposed FDI strategy are generated using a component-level turbofan engine model.The antecedent and consequent parameters of the TSK-based FDI system are optimized using the particle swarm optimization algorithm and ridge regression.A robust structure combining a specialized fuzzy inference system with the TSK-based FDI system is proposed to handle measurement biases.The performance of the first-order TSK-based FDI system and robust FDI structure are evaluated through comprehensive simulation studies.Comparative studies confirm the superior accuracy of the first-order TSK-based FDI system in fault detection,isolation,and identification.The robust structure demonstrates a 2%-8%improvement in the success rate index under relatively large measurement bias conditions,thereby indicating excellent robustness.Accuracy against significant bias values and computation time are also evaluated,suggesting that the proposed robust structure has desirable online performance.This study proposes a novel FDI strategy that effectively addresses measurement uncertainties. 展开更多
关键词 Performance-based fault diagnosis Gas turbine engine Fuzzy inference system Measurement uncertainty Regression and classification
在线阅读 下载PDF
Blockwise Empirical Likelihood Method for Spatial Dependent Data
8
作者 TANG Jie ZOU Yunlong +1 位作者 QIN Yongsong LI Yufang 《应用数学》 北大核心 2025年第1期47-63,共17页
Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the ... Existing blockwise empirical likelihood(BEL)method blocks the observations or their analogues,which is proven useful under some dependent data settings.In this paper,we introduce a new BEL(NBEL)method by blocking the scoring functions under high dimensional cases.We study the construction of confidence regions for the parameters in spatial autoregressive models with spatial autoregressive disturbances(SARAR models)with high dimension of parameters by using the NBEL method.It is shown that the NBEL ratio statistics are asymptoticallyχ^(2)-type distributed,which are used to obtain the NBEL based confidence regions for the parameters in SARAR models.A simulation study is conducted to compare the performances of the NBEL and the usual EL methods. 展开更多
关键词 SARAR model Empirical likelihood Confidence region High-dimensional statistical inference
在线阅读 下载PDF
Data Inference:Data Security Threats in the AI Era
9
作者 Zijun Wang Ting Liu +2 位作者 Yang Liu Enrico Zio Xiaohong Guan 《Engineering》 2025年第9期29-33,共5页
1.Introduction Data inference(DInf)is a data security threat in which critical information is inferred from low-sensitivity data.Once regarded as an advanced professional threat limited to intelligence analysts,DInf h... 1.Introduction Data inference(DInf)is a data security threat in which critical information is inferred from low-sensitivity data.Once regarded as an advanced professional threat limited to intelligence analysts,DInf has become a widespread risk in the artificial intelligence(AI)era. 展开更多
关键词 data security threats data security threat artificial intelligence ai era artificial intelligence data inference data inference dinf advanced professional threat
在线阅读 下载PDF
Predicting groundwater fluoride levels for drinking suitability using machine learning approaches with traditional and fuzzy logic models-based health risk assessment
10
作者 D.Karunanidhi M.Rhishi Hari Raj +1 位作者 V.N.Prapanchan T.Subramani 《Geoscience Frontiers》 2025年第4期413-432,共20页
The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arj... The primary objective of this study is to measure fluoride levels in groundwater samples using machine learning approaches alongside traditional and fuzzy logic models based health risk assessment in the hard rock Arjunanadi River basin,South India.Fluoride levels in the study area vary between 0.1 and 3.10 mg/L,with 32 samples exceeding the World Health Organization(WHO)standard of 1.5 mg/L.Hydrogeochemical analyses(Durov and Gibbs)clearly show that the overall water chemistry is primarily influenced by simple dissolution,mixing,and rock-water interactions,indicating that geogenic sources are the predominant contributors to fluoride in the study area.Around 446.5 km^(2)is considered at risk.In predictive analysis,five Machine Learning(ML)models were used,with the AdaBoost model performing better than the other models,achieving 96%accuracy and 4%error rate.The Traditional Health Risk Assessment(THRA)results indicate that 65%of samples pose highly susceptible for dental fluorosis,while 12%of samples pose highly susceptible for skeletal fluorosis in young age groups.The Fuzzy Inference System(FIS)model effectively manages ambiguity and linguistic factors,which are crucial when addressing health risks linked to groundwater fluoride contamination.In this model,input variables include fluoride concentration,individual age,and ingestion rate,while output variables consist of dental caries risk,dental fluorosis,and skeletal fluorosis.The overall results indicate that increased ingestion rates and prolonged exposure to contaminated water make adults and the elderly people vulnerable to dental and skeletal fluorosis,along with very young and young age groups.This study is an essential resource for local authorities,healthcare officials,and communities,aiding in the mitigation of health risks associated with groundwater contamination and enhancing quality of life through improved water management and health risk assessment,aligning with Sustainable Development Goals(SDGs)3 and 6,thereby contributing to a cleaner and healthier society. 展开更多
关键词 GROUNDWATER FLUORIDE Machine learning Health risk assessment Fuzzy inference system SDGs
在线阅读 下载PDF
A Literature Review on Model Conversion, Inference, and Learning Strategies in EdgeML with TinyML Deployment
11
作者 Muhammad Arif Muhammad Rashid 《Computers, Materials & Continua》 2025年第4期13-64,共52页
Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’... Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’s edge.However,the complexity of model conversion techniques,diverse inference mechanisms,and varied learning strategies make designing and deploying these models challenging.Additionally,deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors.These factors underscore the necessity for a comprehensive literature review,as current reviews do not systematically encompass the most recent findings on these topics.Consequently,it provides a comprehensive overview of state-of-the-art techniques in model conversion,inference mechanisms,learning strategies within EdgeML,and deploying these models on resource-constrained edge devices using TinyML.It identifies 90 research articles published between 2018 and 2025,categorizing them into two main areas:(1)model conversion,inference,and learning strategies in EdgeML and(2)deploying TinyML models on resource-constrained hardware using specific software frameworks.In the first category,the synthesis of selected research articles compares and critically reviews various model conversion techniques,inference mechanisms,and learning strategies.In the second category,the synthesis identifies and elaborates on major development boards,software frameworks,sensors,and algorithms used in various applications across six major sectors.As a result,this article provides valuable insights for researchers,practitioners,and developers.It assists them in choosing suitable model conversion techniques,inference mechanisms,learning strategies,hardware development boards,software frameworks,sensors,and algorithms tailored to their specific needs and applications across various sectors. 展开更多
关键词 Edge machine learning tiny machine learning model compression INFERENCE learning algorithms
在线阅读 下载PDF
Bayesian Inference of Hit Probability of Ammunition Based on Normal-Inverse Wishart Distribution
12
作者 Meng Yang Weimin Ye +1 位作者 Huaiqiang Zhang Aming Ye 《Journal of Beijing Institute of Technology》 2025年第4期373-387,共15页
In order to solve the problems of high experimental cost of ammunition,lack of field test data,and the difficulty in applying the ammunition hit probability estimation method in classical statistics,this paper assumes... In order to solve the problems of high experimental cost of ammunition,lack of field test data,and the difficulty in applying the ammunition hit probability estimation method in classical statistics,this paper assumes that the projectile dispersion of ammunition is a two-dimensional joint normal distribution,and proposes a new Bayesian inference method of ammunition hit probability based on normal-inverse Wishart distribution.Firstly,the conjugate joint prior distribution of the projectile dispersion characteristic parameters is determined to be a normal inverse Wishart distribution,and the hyperparameters in the prior distribution are estimated by simulation experimental data and historical measured data.Secondly,the field test data is integrated with the Bayesian formula to obtain the joint posterior distribution of the projectile dispersion characteristic parameters,and then the hit probability of the ammunition is estimated.Finally,compared with the binomial distribution method,the method in this paper can consider the dispersion information of ammunition projectiles,and the hit probability information is more fully utilized.The hit probability results are closer to the field shooting test samples.This method has strong applicability and is conducive to obtaining more accurate hit probability estimation results. 展开更多
关键词 AMMUNITION Bayesian inference hit probability normal-inverse Wishart distribution projectile dispersion
在线阅读 下载PDF
The quasi-fiducial model selection for Kriging model
13
作者 Chen Fan Shuqin Zhang Xinmin Li 《Statistical Theory and Related Fields》 2025年第3期285-296,共12页
Kriging models are widely employed due to their simplicity and flexibility in a variety of fields.To gain more distributional information about the unknown parameters,we focus on constructing the fiducial distribution... Kriging models are widely employed due to their simplicity and flexibility in a variety of fields.To gain more distributional information about the unknown parameters,we focus on constructing the fiducial distribution of Kriging model parameters.To solve the challenge of constructing the fiducial marginal distribution for the spatially related parameter,we substitute the Bayesian posterior distribution for the fiducial distribution of this spatially related parameter and present a quasi-fiducial distribution for Kriging model parameters.A Gibbs sampling algorithm is given to get the samples of the quasi-fiducial distribution.Then a model selection criterion based on the quasi-fiducial distribution is proposed.Numerical studies demonstrate that the proposed method is superior to the Lasso and Elastic Net. 展开更多
关键词 Kriging model fiducial inference slice sampling model selection
原文传递
A new method for the rate of penetration prediction and control based on signal decomposition and causal inference
14
作者 Yong-Dong Fan Hui-Wen Pang +3 位作者 Yan Jin Han Meng Yun-Hu Lu Hao-Dong Chen 《Petroleum Science》 2025年第6期2414-2437,共24页
Offshore drilling costs are high,and the downhole environment is even more complex.Improving the rate of penetration(ROP)can effectively shorten offshore drilling cycles and improve economic benefits.It is difficult f... Offshore drilling costs are high,and the downhole environment is even more complex.Improving the rate of penetration(ROP)can effectively shorten offshore drilling cycles and improve economic benefits.It is difficult for the current ROP models to guarantee the prediction accuracy and the robustness of the models at the same time.To address the current issues,a new ROP prediction model was developed in this study,which considers ROP as a time series signal(ROP signal).The model is based on the time convolutional network(TCN)framework and integrates ensemble empirical modal decomposition(EEMD)and Bayesian network causal inference(BN),the model is named EEMD-BN-TCN.Within the proposed model,the EEMD decomposes the original ROP signal into multiple sets of sub-signals.The BN determines the causal relationship between the sub-signals and the key physical parameters(weight on bit and revolutions per minute)and carries out preliminary reconstruction of the sub-signals based on the causal relationship.The TCN predicts signals reconstructed by BN.When applying this model to an actual production well,the average absolute percentage error of the EEMD-BN-TCN prediction decreased from 18.4%with TCN to 9.2%.In addition,compared with other models,the EEMD-BN-TCN can improve the decomposition signal of ROP by regulating weight on bit and revolutions per minute,ultimately enhancing ROP. 展开更多
关键词 Rate of penetration Signal decomposition Causal inference Parameters regulation Machine learning
原文传递
Adaptive model switching of collaborative inference for multi-CNN streams in UAV swarm
15
作者 Yu LI Yuben QU +3 位作者 Chao DONG Zhen QIN Lei ZHANG Qihui WU 《Chinese Journal of Aeronautics》 2025年第8期485-497,共13页
Unmanned Aerial Vehicles(UAVs)coupled with deep learning such as Convolutional Neural Networks(CNNs)have been widely applied across numerous domains,including agriculture,smart city monitoring,and fire rescue operatio... Unmanned Aerial Vehicles(UAVs)coupled with deep learning such as Convolutional Neural Networks(CNNs)have been widely applied across numerous domains,including agriculture,smart city monitoring,and fire rescue operations,owing to their malleability and versatility.However,the computation-intensive and latency-sensitive natures of CNNs present a formidable obstacle to their deployment on resource-constrained UAVs.Some early studies have explored a hybrid approach that dynamically switches between lightweight and complex models to balance accuracy and latency.However,they often overlook scenarios involving multiple concurrent CNN streams,where competition for resources between streams can substantially impact latency and overall system performance.In this paper,we first investigate the deployment of both lightweight and complex models for multiple CNN streams in UAV swarm.Specifically,we formulate an optimization problem to minimize the total latency across multiple CNN streams,under the constraints on UAV memory and the accuracy requirement of each stream.To address this problem,we propose an algorithm called Adaptive Model Switching of collaborative inference for MultiCNN streams(AMSM)to identify the inference strategy with a low latency.Simulation results demonstrate that the proposed AMSM algorithm consistently achieves the lowest latency while meeting the accuracy requirements compared to benchmark algorithms. 展开更多
关键词 UAV swarmEdge computing Collaborative inference Model switching Multi-CNN streams
原文传递
Modeling forest recovery in southeast Brazil's mountain biomes:Bayesian analysis of the diffusive-logistic growth(DLG)approach
16
作者 Victor B.F.RAMOS Guilherme J.C.GOMES 《Journal of Mountain Science》 2025年第10期3670-3689,共20页
This study investigated forest recovery in the Atlantic Rainforest and Rupestrian Grassland of Brazil using the diffusive-logistic growth(DLG)model.This model simulates vegetation growth in the two mountain biomes con... This study investigated forest recovery in the Atlantic Rainforest and Rupestrian Grassland of Brazil using the diffusive-logistic growth(DLG)model.This model simulates vegetation growth in the two mountain biomes considering spatial location,time,and two key parameters:diffusion rate and growth rate.A Bayesian framework is employed to analyze the model's parameters and assess prediction uncertainties.Satellite imagery from 1992 and 2022 was used for model calibration and validation.By solving the DLG model using the finite difference method,we predicted a 6.6%–51.1%increase in vegetation density for the Atlantic Rainforest and a 5.3%–99.9%increase for the Rupestrian Grassland over 30 years,with the latter showing slower recovery but achieving a better model fit(lower RMSE)compared to the Atlantic Rainforest.The Bayesian approach revealed well-defined parameter distributions and lower parameter values for the Rupestrian Grassland,supporting the slower recovery prediction.Importantly,the model achieved good agreement with observed vegetation patterns in unseen validation data for both biomes.While there were minor spatial variations in accuracy,the overall distributions of predicted and observed vegetation density were comparable.Furthermore,this study highlights the importance of considering uncertainty in model predictions.Bayesian inference allowed us to quantify this uncertainty,demonstrating that the model's performance can vary across locations.Our approach provides valuable insights into forest regeneration process uncertainties,enabling comparisons of modeled scenarios at different recovery stages for better decision-making in these critical mountain biomes. 展开更多
关键词 Atlantic rainforest Diffusive-logistic growth model Soil-Adjusted Vegetation Index Rupestrian Grassland Forest recovery Bayesian inference
原文传递
A Novel Approach to Estimating Proof Test Coverage for Emergency Shutdown Valves using a Fuzzy Inference System
17
作者 Steve Kriescher Roderick Thomas +2 位作者 Chris Phillips Neil Mac Parthaláin David J.Smith 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期44-52,共9页
Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken us... Published proof test coverage(PTC)estimates for emergency shutdown valves(ESDVs)show only moderate agreement and are predominantly opinion-based.A Failure Modes,Effects,and Diagnostics Analysis(FMEDA)was undertaken using component failure rate data to predict PTC for a full stroke test and a partial stroke test.Given the subjective and uncertain aspects of the FMEDA approach,specifically the selection of component failure rates and the determination of the probability of detecting failure modes,a Fuzzy Inference System(FIS)was proposed to manage the data,addressing the inherent uncertainties.Fuzzy inference systems have been used previously for various FMEA type assessments,but this is the first time an FIS has been employed for use with FMEDA.ESDV PTC values were generated from both the standard FMEDA and the fuzzy-FMEDA approaches using data provided by FMEDA experts.This work demonstrates that fuzzy inference systems can address the subjectivity inherent in FMEDA data,enabling reliable estimates of ESDV proof test coverage for both full and partial stroke tests.This facilitates optimized maintenance planning while ensuring safety is not compromised. 展开更多
关键词 emergency shutdown valves failure modes effects diagnostics analysis fuzzy inference systems proof test coverage
在线阅读 下载PDF
SegInfer:Binary Network Protocol Segmentation Based on Probabilistic Inference
18
作者 Guo Maohua Zhu Yuefei Fei Jinlong 《China Communications》 2025年第6期334-354,共21页
Protocol Reverse Engineering(PRE)is of great practical importance in Internet security-related fields such as intrusion detection,vulnerability mining,and protocol fuzzing.For unknown binary protocols having fixed-len... Protocol Reverse Engineering(PRE)is of great practical importance in Internet security-related fields such as intrusion detection,vulnerability mining,and protocol fuzzing.For unknown binary protocols having fixed-length fields,and the accurate identification of field boundaries has a great impact on the subsequent analysis and final performance.Hence,this paper proposes a new protocol segmentation method based on Information-theoretic statistical analysis for binary protocols by formulating the field segmentation of unsupervised binary protocols as a probabilistic inference problem and modeling its uncertainty.Specifically,we design four related constructions between entropy changes and protocol field segmentation,introduce random variables,and construct joint probability distributions with traffic sample observations.Probabilistic inference is then performed to identify the possible protocol segmentation points.Extensive trials on nine common public and industrial control protocols show that the proposed method yields higher-quality protocol segmentation results. 展开更多
关键词 binary protocol probabilistic inference protocol field segmentation protocol reverse engineering related construction
在线阅读 下载PDF
Temperature and water availability drive vegetation resilience dynamics in China: An empirical study from causal perspective
19
作者 WU Jiapei ZHAO Qikang +2 位作者 ZHOU Yuke NI Yong FAN Junfu 《Journal of Geographical Sciences》 2025年第10期2069-2090,共22页
Understanding the characteristics and driving factors behind changes in vegetation ecosystem resilience is crucial for mitigating both current and future impacts of climate change. Despite recent advances in resilienc... Understanding the characteristics and driving factors behind changes in vegetation ecosystem resilience is crucial for mitigating both current and future impacts of climate change. Despite recent advances in resilience research, significant knowledge gaps remain regarding the drivers of resilience changes. In this study, we investigated the dynamics of ecosystem resilience across China and identified potential driving factors using the kernel normalized difference vegetation index(kNDVI) from 2000 to 2020. Our results indicate that vegetation resilience in China has exhibited an increasing trend over the past two decades, with a notable breakpoint occurring around 2012. We found that precipitation was the dominant driver of changes in ecosystem resilience, accounting for 35.82% of the variation across China, followed by monthly average maximum temperature(Tmax) and vapor pressure deficit(VPD), which explained 28.95% and 28.31% of the variation, respectively. Furthermore, we revealed that daytime and nighttime warming has asymmetric impacts on vegetation resilience, with temperature factors such as Tmin and Tmax becoming more influential, while the importance of precipitation slightly decreases after the resilience change point. Overall, our study highlights the key roles of water availability and temperature in shaping vegetation resilience and underscores the asymmetric effects of daytime and nighttime warming on ecosystem resilience. 展开更多
关键词 vegetation resilience climate change causal inference vegetation index remote sensing of ecosystem
原文传递
PIAFGNN:Property Inference Attacks against Federated Graph Neural Networks
20
作者 Jiewen Liu Bing Chen +2 位作者 Baolu Xue Mengya Guo Yuntao Xu 《Computers, Materials & Continua》 2025年第2期1857-1877,共21页
Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and so... Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks. 展开更多
关键词 Federated graph neural networks GNNs privacy leakage regression model property inference attacks EMBEDDINGS
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部