期刊文献+
共找到299,534篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and high-temperature performance of heat-resistant Al-Fe-Mn alloy prepared by laser powder bed fusion
1
作者 Jun-sheng CHEN Ji-bing CHEN +3 位作者 Qian-yu SHI Yue-ting WANG Xi-zhen XIA Rui-di LI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2183-2200,共18页
With the laser remelting of cast alloys combined with non-equilibrium liquidus projection thermodynamic calculations,a high-strength and heat-resistant Al-3Fe-2Mn alloy was designed.Incorporating Mn atoms into the met... With the laser remelting of cast alloys combined with non-equilibrium liquidus projection thermodynamic calculations,a high-strength and heat-resistant Al-3Fe-2Mn alloy was designed.Incorporating Mn atoms into the metastable nanoscale Al_(6)Fe phase,occupying some lattice sites,enhances its thermal stability.Additionally,during rapid solidification of laser powder bed fusion(L-PBF),the solubility of Fe and Mn elements in the aluminum alloy increases significantly,forming a supersaturated solid solution with improved strength.This alloy demonstrates excellent processability,achieving a relative density of over 99%,and tensile strengths of 295 MPa at 200℃ and 230 MPa at 300℃.The Al-3Fe-2Mn alloy holds great potential for wide applications due to its high strength at high temperature. 展开更多
关键词 Al−Fe−Mn alloy laser powder bed fusion high-temperature strength MICROSTRUCTURE heat-resistant property
在线阅读 下载PDF
Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating 被引量:9
2
作者 Yuefeng Su Feiyu Yuan +5 位作者 Lai Chen Yun Lu Jinyang Dong Youyou Fang Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期39-47,共9页
Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at eleva... Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future. 展开更多
关键词 Li-rich layered oxide Surface heterophase coating Crystalline/amorphous Li3PO4 high-temperature performance Voltage decay
在线阅读 下载PDF
Hybrid effect on mechanical properties and high-temperature performance of copper matrix composite reinforced with micro-nano dual-scale particles 被引量:3
3
作者 Xingde Zhang Yihui Jiang +3 位作者 Fei Cao Tian Yang Fan Gao Shuhua Liang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期94-103,共10页
A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature ... A dual-scale hybrid HfB_(2)/Cu-Hf composite with HfB_(2) microparticles and Cu_(5) Hf nanoprecipitates was designed and prepared.The contribution of the hybrid effect to the mechanical properties and high-temperature performances was studied from macro and micro perspectives,respectively.The hybrid of dual-scale particles can make the strain distribution of the composite at the early deformation stage more uniform and delay the strain concentration caused by the HfB_(2) particle.The dislocation pinning of HfB_(2) particles and the coherent strengthening of Cu_(5) Hf nanoprecipitates simultaneously play a strengthening role,but the strength of the hybrid composite is not a simple superposition of two strengthening mod-els.In addition,both Cu_(5) Hf nanoprecipitates and HfB_(2) microparticles contribute to the high-temperature performance of the composite,the growth and phase transition of nanoprecipitates at high temperature will reduce their contribution to strength,while the stable HfB_(2) particles can inhibit the coarsening of matrix grains and maintain the high-density geometrically necessary dislocations(GNDs)in the matrix,which ensures more excellent high-temperature resistance of the hybrid composite.As a result,the hy-brid structure can simultaneously possess the advantages of multiple reinforcements and make up for the shortcomings of each other.Finally,a copper matrix composite with high strength,high conductivity,and excellent high-temperature performance is displayed. 展开更多
关键词 Copper matrix composite HfB 2 particles Hybrid effect High strength and high conductivity high-temperature performance
原文传递
High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model
4
作者 房玉龙 冯志红 +6 位作者 李成明 宋旭波 尹甲运 周幸叶 王元刚 吕元杰 蔡树军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期117-120,共4页
We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are... We report on the temperature-dependent dc performance of A1GaN/GaN polarization doped field effect transistors (PolFETs). The rough decrements of drain current and transeonductance with the operation temperature are observed. Compared with the conventional HFETs, the drain current drop of the PolFET is smaller. The transeonductance drop of PolFETs at different gate biases shows different temperature dependences. From the aspect of the unique carrier behaviors of graded AlGaN/GaN heterostructure, we propose a quasi-multi-channel model to investigate the physics behind the temperature-dependent performance of AlGaN/GaN PolFETs. 展开更多
关键词 AlGaN high-temperature performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model
原文传递
Optimization of technical measures for improving high-temperature performance of asphalt-rubber mixture 被引量:2
5
作者 Chuan Xiao Tianqing Ling Yanjun Qiu 《Journal of Modern Transportation》 2013年第4期273-280,共8页
Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measu... Asphalt-rubber pavements often become dam-aged in high-temperature regions and appear rutted or wavy, and experience slippage. To improve the high-temperature performance of the asphalt-rubber mixture, technical measurements, such as, the optimal adjustment of gradation, technique of composite modification, and control of compaction were investigated. An optimal adjustment of aggregate gradation based on stone matrix asphalt improves the high-temperature stability of the asphaltrubber mixture significantly. Through composite modifi- cation, the effect of asphalt-rubber modification was enhanced, and the dynamic stability and relative defor- mation indices of the asphalt-rubber mixture were improved significantly. Furthermore, compaction parame- ters had a significant influence on the high-temperature stability of the asphalt-rubber mixture. The rolling times for compacting the asphalt-rubber mixture should be controlled to within 18-20 round-trips at a molding temperature at 180℃; if the rolling time is a 12 round-trip, the compaction temperature of the asphalt-rubber mixture should be controlled between 180 and 190℃. 展开更多
关键词 Road engineering test Asphalt-rubber mixture performance Optimization Laboratory high-temperature
在线阅读 下载PDF
Effect of deformation twinning on high-temperature performance of cold-rolled S31042 steel 被引量:1
6
作者 Yan-mo Li Yong-chang Liu +5 位作者 Li-ming Yu Chen-xi Liu Chong Li Yuan Huang Hui-jun Li Zong-qing Ma 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第7期704-711,共8页
Influence of deformation twinning on high-temperature instantaneous performance of cold-rolled S31042 steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and h... Influence of deformation twinning on high-temperature instantaneous performance of cold-rolled S31042 steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, and high-temperature tensile test. An increasing number of deformation twins have formed as the cold rolling reduction degree increases during the cold rolling process. During the tensile process at 700 ℃, M23C6 particles generated along the deformation twin boundaries, and NbCrN nanoparticles dispersedly precipitated throughout the austenite grains. For the high-temperature tensile sample subjected to cold reduction for 80%, it is observed from the fractured cross section that numerous defor-mation twin boundaries were decorated by discontinuous M23C6 particles. Therefore, austenite grains were divided into several independent zones by the deformation twins, and the grains were refined. Due to the grain refinement strengthening and precipitation strengthening, the high-temperature temporal strength of the 80% cold-rolled sample was significantly improved, and simultaneously, this sample exhibited favorable high-temperature elongation. 展开更多
关键词 S31042 STEEL COLD ROLLING Deformation TWINNING CARBIDE PRECIPITATION high-temperature performance
原文传递
High-temperature performance study of chromium-containing stuffing sand for ladles 被引量:2
7
作者 JIN Congjin DENG Chengji HE pingxian 《Baosteel Technical Research》 CAS 2015年第4期16-19,共4页
High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the co... High-temperature performance tests of chromium-containing stuffing sand for a steel ladle w ith different ratios w ere performed. A high-temperature simulation test furnace w as used to analyze the influence of the composition ratio of ladle filler sand and sintering time on the high-temperature compression resistance of chromium-containing stuffing sand in the temperature range of 1 500- 1 600 ℃. The results show that the refractoriness of ladle filler sand w as the low est( only 1 610 ℃) w hen the composition ratio of chromite sand and silica sand w as 6∶ 4. M oreover,the high-temperature compression resistance w as high w hen the content of chromite sand w as at 70%; the resistance increased w ith increasing sintering time. When the sintering time w as extended at a temperature of 1 600 ℃,the high-temperature compression resistance of ladle filler sand first increased and then decreased after being overburnt. 展开更多
关键词 chromium-containing stuffing sand chromite sand simulation test furnace high-temperature compression resistance
在线阅读 下载PDF
Synthesis and high-temperature performance of Ti substituted α-Ni(OH)_2 被引量:1
8
作者 刘宏兵 向兰 金涌 《中国有色金属学会会刊:英文版》 CSCD 2005年第4期823-827,共5页
Ti substituted α-Ni(OH)2(c=2.121nm, a =0.307nm) with perfect high-temperature performance was prepared by the co-precipitation method. The effects of Ti addition on the structure and the electrochemical prope... Ti substituted α-Ni(OH)2(c=2.121nm, a =0.307nm) with perfect high-temperature performance was prepared by the co-precipitation method. The effects of Ti addition on the structure and the electrochemical properties were investigated. The results indicate that the substitution of Ti for Ni leads to the conversion of β-Ni(OH)2 to α-Ni(OH)2 and the increase of the inter layer distance along c-axis from 0.464nm to 0.707nm. Infrared study reveals that more anions(SO2-4 and CO2-3 ions) and H2O exist in the Ti substituted α-Ni(OH)2. The discharge capacity of the Ti substituted α-Ni(OH)2 is 210mA·h/g at 20℃ and reaches up to 270mA·h/g at 80℃ owing to the inhibition of the oxygen evolution at high temperature. 展开更多
关键词 Α-NI(OH)2 合成工艺 高温条件 蓄电池
在线阅读 下载PDF
High-temperature performance of silica ceramic cores with additives prepared by stereolithography 3D printing
9
作者 Yue-ting Ma Rui-long Yu +4 位作者 Ying-wei Zhou Peng-wei Wang Ren-xiao Zou Tian-jiao Gao Ming Kang 《China Foundry》 2025年第6期673-680,共8页
Ceramic cores are key to forming a cooling structure within the hollow blade cavities.The use of stereolithography(SL)3D printing technology eliminates the need for moulds,facilitating the preparation of complex-shape... Ceramic cores are key to forming a cooling structure within the hollow blade cavities.The use of stereolithography(SL)3D printing technology eliminates the need for moulds,facilitating the preparation of complex-shaped ceramic cores.In this study,silica-based ceramic cores incorporating nano-3YSZ(3mol.% yttria stabilised zirconia)and micron-sized Y_(2)O_(3) were prepared via SL 3D printing ceramic technology to promote the formation of cristobalite and ZrSiO_(4),thereby improving the high-temperature properties.The flexural strength at 25℃ and 1,500℃,deflection at 1,500℃,shrinkage rate,and porosity of the core samples sintered at different temperatures(1,170℃,1,185℃,1,200℃,1,215℃,and 1,230℃)were tested and investigated.The mechanism underlying the high temperature performance of the cores was elucidated through analysis of cross-sectional morphology,element distribution,and phase constitution of the samples.As the sintering temperature increases,the shrinkage and flexural strength at 25℃ of the core rise,while the open porosity and deflection at 1,500℃ decrease.When the sintering temperature reaches 1,200℃ or higher,the 1,500℃ flexural strength can be measured,which increases as the sintering temperature rises.The core exhibits excellent creep resistance when sintered at temperatures of 1,200℃ and above.Considering the comprehensive performance requirements for the core,the sintering temperature of 1,200℃ was selected.At the sintering temperature of 1,200℃,the core exhibits shrinkage rates of 3.76%(X),3.38%(Y),and 3.95%(Z),alongside a flexural strength of 9.01 MPa at 25℃ and 32.15 MPa at 1,500℃,and an open porosity of 26.39%.The deflection of the core at 1,500℃ is 0.15 mm,which helps to maintain the dimensional stability of the ceramic core during casting.XRD results indicate that samples fractured after 25℃ flexural strength test still contain amorphous quartz glass,alongside substantial quantities of yttria stabilized zirconia and Y_(2)O_(3).Samples fractured after 1,500℃ flexural strength test exhibit significant crystallisation of amorphous quartz glass into cristobalite,with silica and 3YSZ combining to form ZrSiO_(4).Y_(2)O_(3) as a network modifier of the glass network destroys the bridging oxygen in the silica-oxygen bond,thereby reducing the energy required for glass crystallisation and promoting the crystallisation reaction of quartz glass to form cristobalite.In addition,nano-3YSZ combines with SiO_(2) at high temperatures to form ZrSiO_(4).Since cristobalite and ZrSiO_(4) are crystals,both of them have strong creep resistance,thus improving the high temperature flexural strength and deformation resistance of the ceramic cores. 展开更多
关键词 3D printing ceramic cores fused silica high temperature performance deflection
在线阅读 下载PDF
Preparation and High-Temperature Oxidation Performance of TiC-NiCr Cermet
10
作者 Zhang Lei Huang Bensheng +4 位作者 Xie Chuandi Chen Gen Du Jiao Sun Haishen Zuo Hanyang 《稀有金属材料与工程》 北大核心 2025年第5期1194-1206,共13页
Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose har... Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose hardness is 65 HRC and flexural strength is 1450 MPa.The high-temperature oxidation mechanism of TiC-based cermets was investigated through an X-ray diffractometer and scanning electron microscope.The added elements Ni and Cr along with their solid solutions not only bond with the hard phase TiC to ensure the physical performance of the cermet,but also impede the internal diffusion during oxidation by forming a dense composite oxide layer,thereby enhancing the oxidation resistance.The TiC-NiCr cermet exhibits a dense protective oxide layer at 900℃ and can endure continuous oxidation for approximately 1000 h.A methodology for fabricating TiC-NiCr metal matrix composites is proposed,and their oxidation resistance is evaluated,providing a theoretical and practical basis for simultaneously enhancing the mechanical properties and oxidation resistance and reducing production costs. 展开更多
关键词 TiC-NiCr microstructure high-temperature oxidation thermodynamics and kinetics
原文传递
Sealing performances of polymer heat-shrinkable tubing for deep rocks under high-temperature and ultrahigh-pressure condition
11
作者 Heng Gao Heping Xie +5 位作者 Zetian Zhang Ru Zhang Mingzhong Gao Yihang Li Ling Chen Hongxin Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4124-4138,共15页
The deep underground engineering will face high-temperature and ultrahigh-pressure(HTUP)condition.Indoor triaxial testing is an important means to investigate this challenge in rock mechanics and rock engineering.Heat... The deep underground engineering will face high-temperature and ultrahigh-pressure(HTUP)condition.Indoor triaxial testing is an important means to investigate this challenge in rock mechanics and rock engineering.Heat-shrinkable tubing,as a seal on the rock surface,is crucial for reconstructing deep rock in situ conditions(ensuring the accuracy and effectiveness of confining pressure and pore pressure).However,there are few reports on testing such material under HTUP condition.Thus,the mechanical and sealing performances of existing heat-shrinkable tubing under HTUP condition is still immature.The motivation of this study is to advance deep rock mechanics and engineering by developing a polymer heat-shrinkable tubing(pressure larger than 140 MPa and temperature greater than 150℃).Experiments using the deep rock in situ thermal insulation coring test system were conducted and compared with conventional heat-shrinkable tubing.The sealing performance of the polymer heat-shrinkable tubing was investigated.The results indicated that deep rock ultrahigh-pressure condition and natural damage to the rock surface are the main causes of conventional heat-shrinkable tubing failure.In contrast,the damage rate of the proposed polymer heat-shrinkable tubing is extremely low,indicating that incorporating base material with high-performances can significantly enhance the pressure resistance of polymer heat-shrinkable tubing.Additionally,through the analysis of experimental results and the three-dimensional(3D)morphology of rock surfaces,the failure behavior of heat-shrinkable tubing under HTUP condition was revealed at the meso-structural level,and the proposed failure criteria,taking into account 3D morphology of rock surfaces and applicable to HTUP condition,have been advanced.The findings offer possibilities for triaxial rock mechanics testing in HTUP condition,providing theoretical and technical support for experiments and engineering applications in deep rock mechanics. 展开更多
关键词 Deep rock high-temperature and ultrahigh-pressure conditions Polymer heat-shrinkable tubing Failure mechanism Failure criterion
在线阅读 下载PDF
Performance Analysis of Foamed Fracturing Fluids Based on Microbial Polysaccharides and Surfactants in High-Temperature and High-Salinity Reservoirs
12
作者 Zhiqiang Jiang Zili Li +5 位作者 Bin Liang Miao He Weishou Hu Jun Tang Chao Song Nanxin Zheng 《Fluid Dynamics & Materials Processing》 2025年第6期1397-1416,共20页
Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides an... Microbial polysaccharides,due to their unique physicochemical properties,have been shown to effec-tively enhance the stability of foam fracturing fluids.However,the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood.In this study,we innovatively investigate this problem with a particular focus on foam stabilization mechanisms.By employing the Waring blender method,the optimal surfactant-microbial polysaccharide blends are identified,and the foam stability,rheological properties,and decay behavior in different systems under varying conditions are systematically analyzed for the first time.The results reveal that microbial polysaccharides significantly enhance foam stability by improving the viscoelasticity of the liquid films,particularly under high-salinity and high-temperature conditions,leading to notable improvements in both foam stability and sand-carrying capacity.Additionally,scanning electron microscopy(SEM)is used to observe the microstructure of the foam liquid films,demonstrating that the network structure formed by the foam stabilizer within the liquid film effectively inhibits foam coarsening.The Lauryl betaine and Diutan gum blend exhibits outstanding foam stability,superior sand-carrying capacity,and minimal core damage,making(LAB+MPS04)it ideal for applications in enhanced production and reservoir stimulation of unconventional reservoirs. 展开更多
关键词 Foam fracturing fluid microbial polysaccharides synergistic effect stabilization mechanism performance
在线阅读 下载PDF
Evaluation on High-temperature Adhesion Performance of Hot-applied Sealant for Asphalt Pavement 被引量:2
13
作者 李峰 LI Tinggang SHI Xiaopei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1237-1241,共5页
In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing met... In order to investigate the high-temperature performances of the asphalt pavement hot-applied sealant, as well as to reduce failures of the sealant pullout, the softening point test and the flow test(two existing methods for evaluating high-temperature performances) were conducted. It was found that both tests could not accurately reflect the adhesion performances of the sealant at high temperatures. For this purpose, the adhesion test for PSAT(pressure sensitive adhesive tape) has been taken as a reference to develop a device that is suitable for evaluating the adhesion performances, by modifying relevant test parameters according to the road conditions at high temperatures. Thirteen common sealants were tested in the modified adhesion test, softening point test and f low test. The experimental results show that no significant correlation(p〉0.05) exists between the adhesion value, softening point, adhesion value and flow value; while a significant correlation(p〈0.05) exists between the softening point and flow value. The modified adhesion test is efficient in distinguishing the hightemperature adhesion performances of different sealants, and can be used as a standard method for evaluating such performances. 展开更多
关键词 hot-applied sealant pullout high-temperature performance adhesion performance modified adhesion test
原文传递
Enhancement of the Mechanical Performance of SiCf/Phenolic Composites after High-temperature Pyrolysis Using ZrC/B_(4)C Particles 被引量:2
14
作者 DING Jie LI Yan +4 位作者 SHI Minxian HUANG Zhixiong QIN Yan ZHUANG Yingluo WANG Cunku 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1262-1268,共7页
The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on t... The composites were prepared by modifying silicon carbide fiber with particles of zirconium carbide(ZrC)and boron carbide(B_(4)C)and incorporating them into a phenolic resin matrix.The influence of ZrC and B_(4)C on the mechanical performance of SiCf/phenolic composites after high-temperature pyrolysis was studied through flexural performance test.The results show that the composite material has good thermal stability and high-temperature mechanical properties.After static ablation at 1400℃ for 15 minutes,the flexural strength of the composite material reaches 286 MPa,which is still 7.3%higher than at room temperature,indicating that the composite material still has good mechanical properties even after heat treatment at 1400℃. 展开更多
关键词 SiC fiber phenolic resin mechanical performance high-temperature pyrolysis
原文传递
Numerical investigation on the startup performance of high-temperature heat pipes for heat pipe cooled reactor application 被引量:9
15
作者 Yu-Chuan Guo Zi-Lin Su +1 位作者 Ze-Guang Li Kan Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第10期143-155,共13页
A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only des... A suitable model for high-temperature heat pipe startup is a prerequisite to realizing the numerical simula-tion for the heat pipe cooled reactor startup from the cold state.It is required that this model not only describes the transient behavior during the startup period,but also reduces the computing resources of the heat pipe cooled reactor simulation in the simplest way.In this study,a simplified model that integrates the two-zone and network models is proposed.In this model,vapor flow in the vapor space,evaporation,and condensation in the vapor–liquid interface are decoupled with heat conduction to achieve a fast calculation of the transient characteristics of the heat pipe.An experimental system for a high-temperature heat pipe was developed to validate the proposed model.A potassium heat pipe was utilized as the experimental material.Startup experiments were performed with differ-ent heating powers.Compared with the experimental results,the accuracy of the proposed model was verified.Moreover,the proposed model can predict the vapor flow,pressure drop,and temperature drop in the vapor space.As indicated by the analysis results,the essential requirements for successful startup are also determined.The heat pipe cannot achieve a successful startup until the heating power satisfies these requirements.All the discussions indicate the capability of the proposed model for the simulation of a high-temperature heat pipe startup from the frozen state;hence,can act as a basic tool for the heat pipe cooled reactor simulation. 展开更多
关键词 high-temperature heat pipe STARTUP Two-zone model Network model
在线阅读 下载PDF
Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants 被引量:1
16
作者 YU Xiao-hui ZHANG Yu-feng +4 位作者 ZHANG Yan HE Zhong-lu DONG Sheng-ming MA Xue-lian YAO Sheng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2754-2765,共12页
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2... Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance. 展开更多
关键词 high-temperature heat pump experimental performance support vector machine back propagation neural network performance prediction
在线阅读 下载PDF
High-temperature Resistance Performance of An Inorganic Adhesive for Concrete Structures Strengthened with CFRP Sheets 被引量:5
17
作者 陈伟宏 QIU Hongxing 崔双双 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期950-954,共5页
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive... Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures. 展开更多
关键词 strengthening RC structures CFRP sheets inorganic adhesive high-temperature resistance MICROSTRUCTURE
原文传递
High-performance and high-thermally stable PSN-PZT piezoelectric ceramics achieved by high-temperature poling 被引量:3
18
作者 Zhengran Chen Ruihong Liang +4 位作者 Chi Zhang Zhiyong Zhou Yuchen Li Zhenming Liu Xianlin Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第21期238-245,共8页
High piezoelectric properties and superior thermal stability are both important indicators of piezoelectric ceramics serving at high temperature.However,since these properties are usually mutually exclusive,high perfo... High piezoelectric properties and superior thermal stability are both important indicators of piezoelectric ceramics serving at high temperature.However,since these properties are usually mutually exclusive,high performance and superior thermal stability are hard to achieve simultaneously.Here we report that a high piezoelectricity(d_(33)∼562 pC/N)and superior thermal stability(the variation is within 7%from 20 to 330℃)were both achieved in 0.4 mol%ZnO-doped 0.02Pb(Sb_(1/2)Nb_(1/2))-0.51PbZrO_(3)-0.47PbTiO_(3) by high-temperature poling.Compared with traditional poling method,high-temperature poling method forms a small-sized and highly oriented domain structure,which can effectively improve the piezoelectric and dielectric properties of piezoelectric ceramics.At the same time,the enhanced pinning effect of defect ions and stabilized domain structure due to high-temperature poling also contribute to the superior temperature stability of the piezoelectric and dielectric properties.This work provides an effective method for designing piezoelectric materials with high performance and good temperature stability for high temperature sensor applications. 展开更多
关键词 Perovskites PIEZOELECTRICITY TEMPERATURE-DEPENDENT Electrical properties high-temperature poling
原文传递
High-performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high-temperature proton exchange membrane fuel cells 被引量:4
19
作者 Zunmin Guo Jianuo Chen +6 位作者 Jae Jong Byun Rongsheng Cai Maria Perez-Page Madhumita Sahoo Zhaoqi Ji Sarah J.Haigh Stuart M.Holmes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期323-334,I0009,共13页
Silica nanosheets(SN)derived from natural vermiculite(Verm)were successfully incorporated into polyethersulfone-polyvinylpyrrolidone(PES-PVP)polymer to fabricate high-temperature proton exchange membranes(HT-PEMs).The... Silica nanosheets(SN)derived from natural vermiculite(Verm)were successfully incorporated into polyethersulfone-polyvinylpyrrolidone(PES-PVP)polymer to fabricate high-temperature proton exchange membranes(HT-PEMs).The content of SN filler was varied(0.1-0.75 wt%)to study its influence on proton conductivity,power density and durability.Benefiting from the hydroxyl groups of SN that enable the formation of additional proton-transferring pathways,the inorganic-organic membrane displayed enhanced proton conductivity of 48.2 mS/cm and power density of 495 mW/cm^(2) at 150℃ without humidification when the content of SN is 0.25 wt%.Furthermore,exfoliated SN(E-SN)and sulfonated SN(S-SN),which were fabricated by a liquid-phase exfoliation method and silane condensation,respectively,were embedded in PES-PVP polymer matrix by a simple blending method.Due to the significant contribution from sulfonic groups in S-SN,the membrane with 0.25 wt%S-SN reached the highest proton conductivity of51.5 mS/cm and peak power density of 546 mW/cm^(2) at150℃,48%higher than the pristine PES-PVP membranes.Compared to unaltered PES-PVP membrane,SN added hybrid composite membrane demonstrated excellent durability for the fuel cell at 150℃.Using a facile method to prepare 2D SN from natural clay minerals,the strategy of exfoliation and functionalization of SN can be potentially used in the production of HT-PEMs. 展开更多
关键词 Silica nanosheets VERMICULITE high-temperature proton exchange membrane Proton conductivity
在线阅读 下载PDF
Thermo-Economic Performance of Geothermal Driven High-Temperature Flash Tank Vapor Injection Heat Pump System:A Comparison Study 被引量:1
20
作者 Huashan Li Xiaoshuang Zhao +2 位作者 Sihao Huang Lingbao Wang Jiongcong Chen 《Energy Engineering》 EI 2023年第8期1817-1835,共19页
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is... Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price. 展开更多
关键词 Geothermal water high-temperature heat pump flash tank vapor injection thermo-economic performance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部