A high-precision map(HPM)is the key infrastructure to realizing the function of automated driving(AD)and ensuring its safety.However,the current laws and regulations on HPMs in China can lead to serious legal complian...A high-precision map(HPM)is the key infrastructure to realizing the function of automated driving(AD)and ensuring its safety.However,the current laws and regulations on HPMs in China can lead to serious legal compliance problems.Thus,proper measures should be taken to remove these barriers.Starting with a complete view of the current legal obstacles to HPMs in China,this study first explains why these legal obstacles exist and the types of legal interests they are trying to protect.It then analyzes whether new technology could be used as an alternative to resolve these concerns.Factors such as national security,AD industry needs,and personal data protection,as well as the flexibility of applying technology,are discussed and analyzed hierarchically for this purpose.This study proposes that China should adhere to national security and AD industry development,pass new technical regulations that redefine the scope of national security regarding geographic information in the field of HPMs,and establish a national platform under the guidance and monitoring of the government to integrate scattered resources and promote the development of HPMs via crowdsourcing.Regarding the legal obstacles with higher technical plasticity,priority should be given to technical solutions such as“available but invisible”technology.Compared with the previous research,this study reveals the current legal barriers in China that have different levels of relevance to national security and different technical plasticity.It also proposes original measures to remove them,such as coordinating national security with the development of the AD industry,reshaping the boundary of national security and industrial interests,and giving priority to technical solutions for legal barriers that have strong technical plasticity.展开更多
Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time p...Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time perception of traffic resources in the entire space-time range,and the criterion for the operation and control of the whole process of the vehicle.As a new form of map,it has distinctive features in terms of cartography theory and application requirements compared with traditional navigation electronic maps.Thus,it is necessary to analyze and discuss its key features and problems to promote the development of research and application of intelligent high-precision map.Accordingly,we propose an information transmission model based on the cartography theory and combine the wheeled robot’s control flow in practical application.Next,we put forward the data logic structure of intelligent high-precision map,and analyze its application in autonomous driving.Then,we summarize the computing mode of“Crowdsourcing+Edge-Cloud Collaborative Computing”,and carry out key technical analysis on how to improve the quality of crowdsourced data.We also analyze the effective application scenarios of intelligent high-precision map in the future.Finally,we present some thoughts and suggestions for the future development of this field.展开更多
With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,spec...With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1].展开更多
Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predomina...Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predominantly on the phase-shifting approach,which involves collecting multiple interferograms and imposes stringent demands on environmental stability.These issues significantly hinder its ability to achieve real-time and dynamic high-precision measurements.Therefore,this study proposes a high-precision large-aperture single-frame interferometric surface profile measurement(LA-SFISPM)method based on deep learning and explores its capability to realize dynamic measurements with high accuracy.The interferogram is matched to the phase by training the data measured using the small aperture.The consistency of the surface features of the small and large apertures is enhanced via contrast learning and feature-distribution alignment.Hence,high-precision phase reconstruction of large-aperture optical components can be achieved without using a phase shifter.The experimental results show that for the tested mirror withΦ=820 mm,the surface profile obtained from LA-SFISPM is subtracted point-by-point from the ground truth,resulting in a maximum single-point error of 4.56 nm.Meanwhile,the peak-to-valley(PV)value is 0.0758λ,and the simple repeatability of root mean square(SR-RMS)value is 0.00025λ,which aligns well with the measured results obtained by ZYGO.In particular,a significant reduction in the measurement time(reduced by a factor of 48)is achieved compared with that of the traditional phase-shifting method.Our proposed method provides an efficient,rapid,and accurate method for obtaining the surface profiles of optical components with different diameters without employing a phase-shifting approach,which is highly desired in large-aperture interferometric measurement systems.展开更多
The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with kn...The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes.展开更多
To efficiently and accurately design satellite constellations equipped with Reentry Glide Vehicles(RGVs),new analytical solutions are developed for calculating their coverage perfor-mance.Specifically,a new coverage m...To efficiently and accurately design satellite constellations equipped with Reentry Glide Vehicles(RGVs),new analytical solutions are developed for calculating their coverage perfor-mance.Specifically,a new coverage model is established by approximating the Reentry Reachable Domain(RRD).However,the computation of real-time relative distances between satellites and targets,which is essential for coverage analysis based on this model,imposes a significant compu-tational burden.To address this challenge,a coverage analysis method based on two-dimensional map theory is proposed.This method represents the coverage conditions of a target as a fixed area on a two-dimensional map and transforms the satellite trajectory into a series of parallel lines.By determining the intersection points between these lines and the area boundaries,the coverage ana-lytical solutions for a target point are derived.On this basis,coverage theorems are presented for rapid calculation of the constellation coverage performance for an area.Simulation results demon-strate the effectiveness and high precision of the proposed analytical solutions.展开更多
Shot peening is commonly employed for surface deformation strengthening of cylindrical surface part.Therefore,it is critical to understand the effects of shot peening on residual stress and surface topography.Compared...Shot peening is commonly employed for surface deformation strengthening of cylindrical surface part.Therefore,it is critical to understand the effects of shot peening on residual stress and surface topography.Compared to flat surface,cylindrical surface shot peening has two significant features:(i)the curvature of the cylindrical surface and the scattering of the shot stream cause dis-tributed impact velocities;(i)the rotation of the part results in a periodic variation of the impact velocity component.Therefore,it is a challenge to quickly and accurately predict the shot peening residual stress and surface topography of cylindrical surface.This paper developed a high-precision model which considers the more realistic shot peening process.Firstly,a kinematic analysis model was developed to simulate the relative movement of numerous shots and cylindrical surface.Then,the spatial distribution and time-varying impact information was calculated.Subsequently,the impact information was used for finite element modeling to predict residual stress and surface topography.The proposed kinematic analysis method was validated by comparison with the dis-crete element method.Meanwhile,9310 high strength steel rollers shot peening test verified the effectiveness of the model in predicting the residual stress and surface topography.In addition,the effects of air pressure and attack angle on the residual stress and surface topography were investigated.This work could provide a functional package for efficient prediction of the surface integrity and guide industrial application in cylindrical surface shot peening.展开更多
目的基于T2^(*)mapping定量分析业余马拉松运动员足踝部关节软骨的T2^(*)值,并分析其与性别、年龄、身体质量指数(body mass index,BMI)、跑龄、跑量之间的相关性。材料与方法于2023年7月份至2023年9月份招募重庆市长跑运动爱好者48名,...目的基于T2^(*)mapping定量分析业余马拉松运动员足踝部关节软骨的T2^(*)值,并分析其与性别、年龄、身体质量指数(body mass index,BMI)、跑龄、跑量之间的相关性。材料与方法于2023年7月份至2023年9月份招募重庆市长跑运动爱好者48名,其中跑量<300 km/月的36例(中低跑量组),跑量≥300 km/月的12例(高跑量组)。所有受试者均进行单侧无症状踝关节的MRI扫描,扫描序列包括T2^(*)mapping多回波自旋回波(spin echo,SE)序列矢状位、质子密度加权成像脂肪抑制(proton density-weighted imaging fat-saturated,PDWI-FS)序列矢状位、冠状位、横轴位以及T1加权脂肪抑制成像(T1-weighted imaging fat-saturated,T1WI-FS)序列横轴位。沿关节软骨轮廓边缘勾画距骨穹窿、跟骰关节跟骨面、骰骨面及后距下关节跟骨面、距骨面软骨作为感兴趣区(region of interest,ROI),获得相应的T2^(*)值。采用线性回归分析软骨T2^(*)值与年龄、BMI、跑龄的相关性,采用独立样本t检验分析不同跑量及不同性别间的软骨T2^(*)值差异。结果(1)距骨穹窿、跟骰关节跟骨面及骰骨面、后距下关节跟骨面及距骨面软骨T2^(*)值在性别上的差异均具有统计学意义(P=0.001、P<0.001、P=0.002、P=0.008、P=0.004);(2)高跑量组的距骨穹窿、后距下关节跟骨面软骨T2^(*)值高于中低跑量组(P=0.014、0.023),不同跑量的跟骰关节跟骨面及骰骨面、后距下关节距骨面软骨T2^(*)值的差异均无统计学意义(P=0.987、0.072、0.724);(3)距骨穹窿、跟骰关节跟骨面及骰骨面、后距下关节跟骨面、距骨面软骨T2^(*)值均与BMI呈正相关(r=0.376、0.384、0.300、0.422、0.455,P=0.005、0.004、0.019、0.001、0.001)。结论在业余马拉松运动员这一跑步群体中,与中低跑量相比,高跑量更有可能导致距骨穹窿、后距下关节跟骨面软骨损伤;而与较低的BMI相比,高BMI增加了距骨穹窿、跟骰关节跟骨面、骰骨面及后距下关节跟骨面、距骨面软骨损伤的风险。展开更多
【目的】探究丝裂原活化蛋白激酶激酶6(mitogen-activated protein kinase kinase6,MAP2K6)基因在湖羊不同发育阶段背最长肌组织中的表达水平,分析该基因的多态性与湖羊生长性状之间的相关性,以期为湖羊的生长性状分子育种提供新的标记...【目的】探究丝裂原活化蛋白激酶激酶6(mitogen-activated protein kinase kinase6,MAP2K6)基因在湖羊不同发育阶段背最长肌组织中的表达水平,分析该基因的多态性与湖羊生长性状之间的相关性,以期为湖羊的生长性状分子育种提供新的标记资源。【方法】利用实时荧光定量PCR检测MAP2K6基因在湖羊(n=15)不同发育阶段背最长肌组织中的表达情况;通过Illumina OvineSNP 50K BeadChip检测湖羊(n=3024)MAP2K6基因的单核苷酸多态性(SNP),利用一般线性模型分析MAP2K6基因SNP位点与湖羊(n=1974)生长性状间的关联性,并使用R语言corrplot包计算湖羊体重与各体尺指标的相关系数。【结果】实时荧光定量PCR检测结果显示,湖羊背最长肌组织中MAP2K6基因表达量在初生到4月龄阶段逐渐升高,且3、4月龄的表达量均极显著高于初生、45日龄和6月龄(P<0.01)。湖羊MAP2K6基因中共检测到2个位点:rs414959578G>A和rs426057803A>G。关联分析结果显示,MAP2K6基因rs414959578G>A位点对湖羊5月龄体重、体高、体斜长、胸围、胸深、胸宽、十字部高、腰角宽,以及6月龄胸围、背膘厚有显著或极显著影响(P<0.05;P<0.01);rs426057803A>G位点对湖羊3月龄管围,5月龄胸围、管围和十字部高以及6月龄背膘厚有显著或极显著影响(P<0.05;P<0.01)。相关性分析结果显示,湖羊体重与体尺指标间存在显著正相关(P<0.05),但6月龄湖羊体斜长与6月龄胸宽、腰角宽,5月龄管围与6月龄腰角宽均不存在显著相关(P>0.05)。【结论】MAP2K6基因与湖羊背最长肌的发育相关,rs414959578G>A和rs426057803A>G位点对湖羊生长性状有显著影响。研究结果可为湖羊生长性状分子标记的挖掘和利用提供一定的理论依据。展开更多
基金the Research on Governing Princi-ples and Mechanism of Autonomous Driving Supported by the Shanghai Science and Technology Committee(No.20511101703)the Research on Key Applicable Techniques and Legal Social Problem about Autonomous Driving Electronic Vehicles Sup-ported by the Ministry of Science and Technology(No.2018YFB0105202-05)。
文摘A high-precision map(HPM)is the key infrastructure to realizing the function of automated driving(AD)and ensuring its safety.However,the current laws and regulations on HPMs in China can lead to serious legal compliance problems.Thus,proper measures should be taken to remove these barriers.Starting with a complete view of the current legal obstacles to HPMs in China,this study first explains why these legal obstacles exist and the types of legal interests they are trying to protect.It then analyzes whether new technology could be used as an alternative to resolve these concerns.Factors such as national security,AD industry needs,and personal data protection,as well as the flexibility of applying technology,are discussed and analyzed hierarchically for this purpose.This study proposes that China should adhere to national security and AD industry development,pass new technical regulations that redefine the scope of national security regarding geographic information in the field of HPMs,and establish a national platform under the guidance and monitoring of the government to integrate scattered resources and promote the development of HPMs via crowdsourcing.Regarding the legal obstacles with higher technical plasticity,priority should be given to technical solutions such as“available but invisible”technology.Compared with the previous research,this study reveals the current legal barriers in China that have different levels of relevance to national security and different technical plasticity.It also proposes original measures to remove them,such as coordinating national security with the development of the AD industry,reshaping the boundary of national security and industrial interests,and giving priority to technical solutions for legal barriers that have strong technical plasticity.
基金National Key Research and Development Program(No.2018YFB1305001)Major Consulting and Research Project of Chinese Academy of Engineering(No.2018-ZD-02-07)。
文摘Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time perception of traffic resources in the entire space-time range,and the criterion for the operation and control of the whole process of the vehicle.As a new form of map,it has distinctive features in terms of cartography theory and application requirements compared with traditional navigation electronic maps.Thus,it is necessary to analyze and discuss its key features and problems to promote the development of research and application of intelligent high-precision map.Accordingly,we propose an information transmission model based on the cartography theory and combine the wheeled robot’s control flow in practical application.Next,we put forward the data logic structure of intelligent high-precision map,and analyze its application in autonomous driving.Then,we summarize the computing mode of“Crowdsourcing+Edge-Cloud Collaborative Computing”,and carry out key technical analysis on how to improve the quality of crowdsourced data.We also analyze the effective application scenarios of intelligent high-precision map in the future.Finally,we present some thoughts and suggestions for the future development of this field.
文摘With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1].
基金funded by the National Natural Science Foundation of China Instrumentation Program(52327806)Youth Fund of the National Nature Foundation of China(62405020)China Postdoctoral Science Foundation(2024M764131).
文摘Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predominantly on the phase-shifting approach,which involves collecting multiple interferograms and imposes stringent demands on environmental stability.These issues significantly hinder its ability to achieve real-time and dynamic high-precision measurements.Therefore,this study proposes a high-precision large-aperture single-frame interferometric surface profile measurement(LA-SFISPM)method based on deep learning and explores its capability to realize dynamic measurements with high accuracy.The interferogram is matched to the phase by training the data measured using the small aperture.The consistency of the surface features of the small and large apertures is enhanced via contrast learning and feature-distribution alignment.Hence,high-precision phase reconstruction of large-aperture optical components can be achieved without using a phase shifter.The experimental results show that for the tested mirror withΦ=820 mm,the surface profile obtained from LA-SFISPM is subtracted point-by-point from the ground truth,resulting in a maximum single-point error of 4.56 nm.Meanwhile,the peak-to-valley(PV)value is 0.0758λ,and the simple repeatability of root mean square(SR-RMS)value is 0.00025λ,which aligns well with the measured results obtained by ZYGO.In particular,a significant reduction in the measurement time(reduced by a factor of 48)is achieved compared with that of the traditional phase-shifting method.Our proposed method provides an efficient,rapid,and accurate method for obtaining the surface profiles of optical components with different diameters without employing a phase-shifting approach,which is highly desired in large-aperture interferometric measurement systems.
基金supported by the National Natural Science Foundation of China (Nos. 12172388 and 12472400)the Guangdong Basic and Applied Basic Research Foundation of China(No. 2025A1515011975)the Scientific Research Project of Guangdong Polytechnic Normal University of China (No. 2023SDKYA010)
文摘The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes.
基金supported by the National Natural Science Foundation of China (No.62273119).
文摘To efficiently and accurately design satellite constellations equipped with Reentry Glide Vehicles(RGVs),new analytical solutions are developed for calculating their coverage perfor-mance.Specifically,a new coverage model is established by approximating the Reentry Reachable Domain(RRD).However,the computation of real-time relative distances between satellites and targets,which is essential for coverage analysis based on this model,imposes a significant compu-tational burden.To address this challenge,a coverage analysis method based on two-dimensional map theory is proposed.This method represents the coverage conditions of a target as a fixed area on a two-dimensional map and transforms the satellite trajectory into a series of parallel lines.By determining the intersection points between these lines and the area boundaries,the coverage ana-lytical solutions for a target point are derived.On this basis,coverage theorems are presented for rapid calculation of the constellation coverage performance for an area.Simulation results demon-strate the effectiveness and high precision of the proposed analytical solutions.
基金the National Natural Science Foundation of China (No.U22B2086)the National Science and Technology Major Project through (No.2019-VII-0017-0158).
文摘Shot peening is commonly employed for surface deformation strengthening of cylindrical surface part.Therefore,it is critical to understand the effects of shot peening on residual stress and surface topography.Compared to flat surface,cylindrical surface shot peening has two significant features:(i)the curvature of the cylindrical surface and the scattering of the shot stream cause dis-tributed impact velocities;(i)the rotation of the part results in a periodic variation of the impact velocity component.Therefore,it is a challenge to quickly and accurately predict the shot peening residual stress and surface topography of cylindrical surface.This paper developed a high-precision model which considers the more realistic shot peening process.Firstly,a kinematic analysis model was developed to simulate the relative movement of numerous shots and cylindrical surface.Then,the spatial distribution and time-varying impact information was calculated.Subsequently,the impact information was used for finite element modeling to predict residual stress and surface topography.The proposed kinematic analysis method was validated by comparison with the dis-crete element method.Meanwhile,9310 high strength steel rollers shot peening test verified the effectiveness of the model in predicting the residual stress and surface topography.In addition,the effects of air pressure and attack angle on the residual stress and surface topography were investigated.This work could provide a functional package for efficient prediction of the surface integrity and guide industrial application in cylindrical surface shot peening.