期刊文献+
共找到283,281篇文章
< 1 2 250 >
每页显示 20 50 100
Salt and Pepper Noise Filter Based on GA-BP Algorithm Noise Detector 被引量:2
1
作者 宋寅卯 李晓娟 《光电工程》 CAS CSCD 北大核心 2011年第2期59-64,共6页
基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网... 基于噪声检测的中值滤波器已广泛用于消除图像中的椒盐噪声,然而在高噪声密度情况下,对噪声像素的定位不准确很容易造成图像边缘的模糊。本文提出了一种基于GA-BP的椒盐噪声滤波算法,克服了这一缺陷。算法首先用遗传算法优化的BP网络对图像中的噪声像素定位,然后引入保边函数和PRP算法求目标函数的极值进而实现图像的去噪处理。实验结果表明,该算法比传统滤波算法效果有明显改善,且具有良好的泛化性、鲁棒性和自适应性。 展开更多
关键词 ga-bp算法 椒盐噪声 噪声检测 保边函数 PRP算法
在线阅读 下载PDF
Neural Network Based on GA-BP Algorithm and its Application in the Protein Secondary Structure Prediction 被引量:8
2
作者 YANG Yang LI Kai-yang 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第1期1-9,共9页
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines... The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%. 展开更多
关键词 BP algorithm GENETIC algorithm NEURAL network STRUCTURE classification Protein SECONDARY STRUCTURE prediction
暂未订购
发电上市公司社会责任会计信息披露质量评价——基于因子分析和GA-BP神经网络模型
3
作者 何姣 李娜 湛忠灿 《会计之友》 北大核心 2026年第2期83-91,共9页
企业社会责任会计信息披露作为衡量公司履行社会责任的重要手段,对于提升企业透明度和社会形象至关重要。通过构建发电上市公司社会责任会计信息披露质量评价指标体系,运用因子分析和GA-BP神经网络模型对2019—2023年连续独立发布社会... 企业社会责任会计信息披露作为衡量公司履行社会责任的重要手段,对于提升企业透明度和社会形象至关重要。通过构建发电上市公司社会责任会计信息披露质量评价指标体系,运用因子分析和GA-BP神经网络模型对2019—2023年连续独立发布社会责任报告的10家典型发电上市公司进行披露质量评价。研究发现:10家公司社会责任会计信息披露质量整体呈现逐年改善趋势,但披露质量水平有待进一步提升;大唐发电、华能国际等5家中央企业所属上市公司披露质量相对较高;不同公司受社会责任投入、绿色环保因子等因素综合影响导致披露质量差异较大。文章分别从建立完善的披露体系、加强外部独立鉴证和提高企业自身披露水平三个方面提出对策建议,以期为提升发电上市公司社会责任会计信息披露质量提供借鉴。 展开更多
关键词 社会责任会计 信息披露 ga-bp神经网络 因子分析
在线阅读 下载PDF
面向Ni-SiC纳米镀层耐磨性能预测的GA-BP神经网络模型
4
作者 覃树宏 梁锦 《电镀与精饰》 北大核心 2026年第1期116-122,130,共8页
Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genet... Ni-SiC纳米镀层的耐磨性能与其制备工艺参数之间存在复杂的非线性关系,需要具有很强的非线性拟合能力,才能捕捉输入参数与耐磨性能之间的复杂关系,在进行模型求解时可避免陷入局部最优而降低预测精度。为此,提出遗传算法-反向传播(Genetic Algorithm-Backpropagation,GA-BP)神经网络模型,对Ni-SiC纳米镀层的耐磨性能预测方法展开研究。选用50 mm×50 mm×5 mm 304不锈钢板材作为基体材料进行预处理,使用电镀液配方对镀液进行配置;采用恒电流脉冲电镀模式完成复合电镀,并利用多功能摩擦磨损试验机进行耐磨性能试验;构建基于BP神经网络的Ni-SiC纳米镀层耐磨性能预测模型,并引入遗传算法对BP神经网络模型的阈值和权值展开寻优,将磨损量作为模型输出,实现Ni-SiC纳米镀层的耐磨性能预测。试验表明,利用本文方法获取的磨损量预测值与磨损量真实值之间的误差最大仅为0.2 mg,预测后的R^(2)为0.988,预测结果的拟合优度较高,应用效果较好。 展开更多
关键词 Ni-SiC纳米镀层 耐磨性能预测 GA算法 BP神经网络 摩擦磨损
在线阅读 下载PDF
基于GA-BP神经网络的碳纤维复合芯导线压接缺陷识别方法
5
作者 杜志叶 黄子韧 +2 位作者 俸波 岳国华 廖永力 《电工技术学报》 北大核心 2026年第1期315-328,共14页
碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出... 碳纤维复合芯导线因其低碳节能等特性,在输电线路的增容改造中有着良好的应用前景。但碳纤维芯棒十分脆弱,技术工艺不成熟,由于压接不良导致的断线事故时有发生,制约了该技术的推广应用。为此,该文针对断裂和少压两种严重压接缺陷,提出一种碳纤维复合芯导线压接缺陷的漏磁检测信号缺陷特征提取方法。通过实验优化,以漏磁检测信号数据中7个峰值点的幅值、21个相对位置信息和7个波形类型信息作为缺陷判断特征值,有效地提高了缺陷种类和缺陷程度识别的准确度。对碳纤维芯导线进行磁性制备,并研制相对应的漏磁检测装置,生产106根不同类型、不同程度的碳纤维芯压接缺陷样品,得到613组漏磁检测信号数据并完成特征值提取,搭建基于遗传算法(GA)的反向传播(BP)神经网络。实测数据表明,该方法可以有效地完成对碳纤维复合芯导线压接缺陷类型的识别,同时对缺陷程度的识别准确率可达到94.31%。 展开更多
关键词 碳纤维复合芯导线 缺陷识别 磁性制备 漏磁检测 遗传算法 BP神经网络
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
6
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
7
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
8
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
9
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
10
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
Energy-absorption forecast of thin-walled structure by GA-BP hybrid algorithm 被引量:8
11
作者 谢素超 周辉 +1 位作者 赵俊杰 章易程 《Journal of Central South University》 SCIE EI CAS 2013年第4期1122-1128,共7页
In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-B... In order to analyze the influence rule of experimental parameters on the energy-absorption characteristics and effectively forecast energy-absorption characteristic of thin-walled structure, the forecast model of GA-BP hybrid algorithm was presented by uniting respective applicability of back-propagation artificial neural network (BP-ANN) and genetic algorithm (GA). The detailed process was as follows. Firstly, the GA trained the best weights and thresholds as the initial values of BP-ANN to initialize the neural network. Then, the BP-ANN after initialization was trained until the errors converged to the required precision. Finally, the network model, which met the requirements after being examined by the test samples, was applied to energy-absorption forecast of thin-walled cylindrical structure impacting. After example analysis, the GA-BP network model was trained until getting the desired network error only by 46 steps, while the single BP-ANN model achieved the same network error by 992 steps, which obviously shows that the GA-BP hybrid algorithm has faster convergence rate. The average relative forecast error (ARE) of the SEA predictive results obtained by GA-BP hybrid algorithm is 1.543%, while the ARE of the SEA predictive results obtained by BP-ANN is 2.950%, which clearly indicates that the forecast precision of the GA-BP hybrid algorithm is higher than that of the BP-ANN. 展开更多
关键词 thin-walled structure ga-bp hybrid algorithm IMPACT energy-absorption characteristic FORECAST
在线阅读 下载PDF
基于田口方法与GA-BP神经网络的高速钢轧辊磨削表面粗糙度预测
12
作者 高慧敏 任新意 +3 位作者 艾矫健 黄华贵 周鹏飞 胡淇伟 《上海金属》 2025年第3期86-92,共7页
由于高速钢轧辊磨削表面粗糙度难以预测且精度低,结合田口方法与GA-BP(genetic algorithm-back propagation)神经网络提出了一种预测轧辊磨削表面粗糙度的智能方法。采用田口正交试验设计和信噪比理论,研究了轧辊转速、砂轮速度、横移... 由于高速钢轧辊磨削表面粗糙度难以预测且精度低,结合田口方法与GA-BP(genetic algorithm-back propagation)神经网络提出了一种预测轧辊磨削表面粗糙度的智能方法。采用田口正交试验设计和信噪比理论,研究了轧辊转速、砂轮速度、横移速度和进给量等工艺参数对轧辊表面粗糙度的影响,获得了最优磨削工艺参数。利用遗传算法对BP神经网络中的权值和阈值进行优化,并利用实际生产数据构建了基于GA-BP神经网络的预测高速钢轧辊磨削表面粗糙度模型。与实测结果的对比表明,该模型具有良好的适用性和预测精度,可为高速钢轧辊表面粗糙度的精准控制提供参考。 展开更多
关键词 热轧 磨削 田口方法 ga-bp神经网络 表面粗糙度
在线阅读 下载PDF
基于GA-BP神经网络的风雹耦合所致冰雹冲击力预测
13
作者 戴益民 李怿歆 +2 位作者 徐瑛 刘泰廷 王威 《工程力学》 北大核心 2025年第12期191-199,共9页
自然灾害统计表明,风雹对光伏结构灾害损失量呈现逐年递增趋势,国内外针对风雹耦合作用相关研究基本空白,因此有必要针对风雹耦合作用下光伏结构的抗风雹冲击力开展研究,该研究对精确预测光伏结构抗风雹冲击能力具有重要的现实意义。该... 自然灾害统计表明,风雹对光伏结构灾害损失量呈现逐年递增趋势,国内外针对风雹耦合作用相关研究基本空白,因此有必要针对风雹耦合作用下光伏结构的抗风雹冲击力开展研究,该研究对精确预测光伏结构抗风雹冲击能力具有重要的现实意义。该文采用课题组自研的冰雹冲击模拟一体化装置进行了风雹耦合机理试验,以风速与湍流度为变量,系统研究不同粒径冰雹对光伏结构冲击力峰值规律,试验结果验证并指导建立了BP神经网络结构用于预测风雹下单颗粒冰雹冲击力,同时利用遗传算法对BP神经网络进行优化,建立了GA-BP神经网络。结果表明:冰雹冲击力峰值随着冰雹粒子直径、发射速度以及风速的增大而增大,冰雹冲击力峰值随着湍流度的增大而减小,且同样冰雹发射速度下,直径越大,冰雹冲击力受风速以及湍流度的影响越明显;相比传统BP神经网络,GA-BP神经网络的预测精度和泛化能力更强,可以更精准地预测风雹耦合作用下单颗粒冰雹冲击力峰值。 展开更多
关键词 光伏结构风雹灾害 冰雹冲击力 BP神经网络 ga-bp神经网络 风速 湍流度
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
14
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 BP神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化 被引量:1
15
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
基于数字孪生及GA-BP神经网络的开关柜温升风险预测 被引量:1
16
作者 谢汶含 蒋永清 +2 位作者 孙大伟 王志伟 孙超 《中国安全生产科学技术》 北大核心 2025年第2期184-190,共7页
风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜... 风电机组开关柜是风电场的重要电力设备之一,为保障开关柜的稳定运行和风电机组的安全,针对开关柜内部器件温升异常问题进行研究。采用数字孪生技术对开关柜温升状态进行数字化建模,设计开关柜数字孪生架构模型,在不同条件下仿真开关柜触头温升,通过GA-BP神经网络对温升数据进行训练学习,实现触头温升异常风险预测。研究结果表明:数字孪生体可再现物理开关柜运行的全部温度数据,通过GA-BP网络模型预测开关柜温升风险平均绝对百分比误差为0.03%,可实现温升风险准确预测,避免开关柜因温升过高而导致热故障发生。 展开更多
关键词 开关柜 温升 风险预测 数字孪生 ga-bp神经网络
在线阅读 下载PDF
响应面法与GA-BP神经网络联合优化细菌降解石油烃参数研究 被引量:1
17
作者 鲁钧豪 孙先锋 +2 位作者 王致桦 宋柯 吴蔓莉 《现代化工》 北大核心 2025年第4期102-109,共8页
采用单因素法考察环境因子对石油烃降解率的影响,以石油烃降解率为响应值,利用响应面法(RSM)和遗传算法优化反向传播(GA-BP)神经网络和石油烃降解条件,并对优化结果进行对比。结果表明,目标菌株BM-1为蕈状芽孢杆菌(Bacillus mycoides),... 采用单因素法考察环境因子对石油烃降解率的影响,以石油烃降解率为响应值,利用响应面法(RSM)和遗传算法优化反向传播(GA-BP)神经网络和石油烃降解条件,并对优化结果进行对比。结果表明,目标菌株BM-1为蕈状芽孢杆菌(Bacillus mycoides),经GA-BP神经网络优化后的最优降解条件为:温度为35.10℃、pH为7.96、菌液接种量为5.17%、初始原油质量分数为1.02%,该条件下石油烃降解率的试验值可达(63.15±0.73)%,而GA-BP神经网络的预测值为63.4926%,预测值与试验值之间相对误差仅0.54%,模型整体拟合度较高(R=0.976 06),说明应用GA-BP神经网络优化石油烃降解条件合理可行。 展开更多
关键词 石油烃降解 响应面法 条件优化 ga-bp神经网络
原文传递
基于特征工程和GA-BP神经网络的气体超声流量计使用中检验方法的研究 被引量:1
18
作者 金宇强 李春辉 +1 位作者 黄震威 谢代梁 《计量学报》 北大核心 2025年第6期884-890,共7页
气体超声流量计是天然气输气站的关键计量器具,检定法和使用中检验法是判定流量计计量性能的主要方法,基于机器学习的使用中检验方法是解决检定法局限性的有效手段。针对天然气现场应用过程中机器学习算法在模型构建和特征冗余较大,部... 气体超声流量计是天然气输气站的关键计量器具,检定法和使用中检验法是判定流量计计量性能的主要方法,基于机器学习的使用中检验方法是解决检定法局限性的有效手段。针对天然气现场应用过程中机器学习算法在模型构建和特征冗余较大,部分检定流量点模型表现欠佳的问题,提出了一种基于特征工程和遗传算法优化的BP神经网络方法。特征选择作为特征工程中的关键,通过综合3种不同类别的特征选择算法对超声流量计性能参数进行分析筛选,在保持关键特征参数和模型性能的基础上,减少冗余特征,将初始的17个特征降至9个;同时利用遗传算法对BP模型的泛化能力进行了优化。研究结果表明,经过优化的模型相较于传统模型表现出较为显著的提升,最高预测准确度提升达33%。 展开更多
关键词 流量计量 超声流量计 使用中检验 机器学习 特征工程 ga-bp神经网络
在线阅读 下载PDF
GA-BP神经网络在精准刻画场地地下水污染物扩散范围的应用研究 被引量:1
19
作者 季佳运 肖霄 +2 位作者 杨品璐 刘洋 周亚红 《岩矿测试》 北大核心 2025年第3期406-419,共14页
自2021年最新生态环境损害鉴定评估指南发布实施以来,对地下水中污染物(如铬、铅、铁、锰等污染物)的扩散范围刻画的精度要求越来越高。受研究区场地条件限制,采样点无法完全分布均匀,现有插值方法难以解决采样点分布不均而导致扩散范... 自2021年最新生态环境损害鉴定评估指南发布实施以来,对地下水中污染物(如铬、铅、铁、锰等污染物)的扩散范围刻画的精度要求越来越高。受研究区场地条件限制,采样点无法完全分布均匀,现有插值方法难以解决采样点分布不均而导致扩散范围刻画不准确的问题。本文通过ArcGIS空间插值图展示某化工园区地下水溶质的空间分布,发现Mn^(2+)离子分布与其形成机制规律相差较大,且尝试使用GIS多种插值方法(如克里金法、反距离权重法、样条函数等插值方法)效果均不理想,其扩散方向与研究区地下水流向及形成机理不符,可能是由于其监测点位分布不均。因此以重金属Mn^(2+)为例,使用GA-BP神经网络与标准BP神经网络对园区各点位Mn^(2+)浓度进行回归预测,建立其浓度与空间分布的神经网络模型,选取拟合程度较好的神经网络模型对监测点位缺失区域进行浓度预测,并结合空间插值圈定化工园区中心Mn^(2+)的扩散范围,同时用Mn^(2+)的产生机制对扩散范围进行验证。结果表明:GA-BP神经网络的Mn^(2+)浓度预测效果最好,使用其补充监测点缺失位置的Mn^(2+)浓度并重新绘制Mn^(2+)浓度分布图,新Mn^(2+)分布图显示化工园区中心Mn^(2+)扩散范围为1.70×10^(6)m^(2),超出化工园区面积为2.13×10^(5)m^(2)。与优化前的扩散范围相比,校正后的扩散范围符合Mn^(2+)产生和运移规律。GA-BP神经网络对场地地下水污染物扩散范围的精确圈定有较好的辅助效果,可为环境污染评估提供更加科学有效的方法支持。 展开更多
关键词 地下水 化工园区 ga-bp神经网络 扩散范围
在线阅读 下载PDF
一种基于GA-BP神经网络的冷库能耗预测 被引量:1
20
作者 王雅博 陈君豪 +1 位作者 刘兴华 张行健 《冷藏技术》 2025年第1期79-85,75,共8页
影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建... 影响冷库能耗的因素众多,其中,货物信息的缺失使得建立冷库预测模型面临一定的挑战。为解决该问题,提出利用冷库当天使用面积代替传统的货物信息作为输入特征,依据某大型冷库历史能耗数据,采用斯皮尔曼相关性分析筛选出合适的变量,构建基于GA-BP神经网络的冷库能耗模型。结果表明,在缺失货物信息的情况下,使用冷库当天使用面积作为输入变量能够保证模型具有高准确率,R2达到0.9563,并且性能优于BP神经网络、多元回归模型。 展开更多
关键词 能耗预测 特征选择 遗传算法 BP神经网络 机器学习
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部