Retinal Optical Coherence Tomography (OCT) images, a non-invasive imaging technique, have become a standard retinal disease detection tool. Due to disease, there are morphological and textural changes in the layers of...Retinal Optical Coherence Tomography (OCT) images, a non-invasive imaging technique, have become a standard retinal disease detection tool. Due to disease, there are morphological and textural changes in the layers of the retina. Classifying OCT images is challenging, as the morphological manifestations of different diseases may be similar. The OCT images capture the reflectivity characteristics of the retinal tissues. Retinal diseases change the reflectivity property of retinal tissues, resulting in texture variations in OCT images. We propose a hybrid approach to OCT image classification in which the Convolution Neural Network (CNN) model is trained using Multiple Neighborhood Local Ternary Pattern (MNLTP) texture descriptors of the OCT images dataset for a robust disease prediction system. Parallel deep CNN (PDCNN) is proposed to improve feature representation and generalizability. The MNLTP-PDCNN model is tested on two publicly available datasets. The parameter values Accuracy, Precision, Recall, and F1-Score are calculated. The best accuracy obtained specifying the model’s overall performance is 93.98% and 99% for the NEH and OCT2017 datasets, respectively. With the proposed architecture, comparable performance is obtained with a subset of the original OCT2017 data set and a comparatively smaller number of trainable parameters (1.6 million, 1.8 million, and 2.3 million for a single CNN branch, two parallel CNN branches, and three parallel network branches, respectively), compared to off-the-shelf CNN models. Hence, the proposed approach is suitable for real-time OCT image classification systems with fast training of the CNN model and reduced memory requirement for computations.展开更多
An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based o...An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.展开更多
Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains...Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.展开更多
Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the pattern...Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the patterns of interchanges,which are indispensable parts of urban road networks.In the SC-GCNN model,an interchange is modeled as a graph,wherein nodes and edges represent the interchange segments and their connections,respectively.Then,a novel SC descriptor is implemented to describe the contextual information of each interchange segment and serve as descriptive features of graph nodes.Finally,a GCNN is designed by combining graph convolution and pooling operations to process the constructed graphs and classify the interchange patterns.The SC-GCNN model was validated using interchange samples obtained from the road networks of 15 cities downloaded from OpenStreetMap.The classification accuracy was 87.06%,which was higher than that of the image-based AlexNet,GoogLeNet,and Random Forest models.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein...The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein,we demonstrate that the descriptorΩparameterized by readily accessible intrinsic properties of metal center and coordination is highly operational and efficient in rational design of single-atom catalyst(SAC)for driving electrochemical nitrogen reduction(NRR).Using twodimensional metal(M)-B_(x)P_(y)S_(z)N_m@C_(2)N as prototype SAC models,we reveal that^(*)N_(2)+(H~++e~-)→^(*)N_(2)H acts predominantly as the potential-limiting step(PLS)of NRR on M-B_(2)P_(2)S_(2)@C_(2)N and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N regardless of the distinction in coordination microenvironment.Among the 28 screened M active sites,withΩvalues close to the optimal 4,M-B_(2)P_(2)S_(2)@C_(2)N(M=V(Ω=3.53),Mo(Ω=5.12),and W(Ω=3.92))and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N(M=V(Ω=3.00),Mo(Ω=4.34),and W(Ω=3.32))yield the lowered limiting potential(U_(L))as-0.45,-0.54.-0.36,-0.58,-0.25,and-0.24 V,respectively,thus making them the promising NRR catalysts.More importantly,these SACs are located around the top of volcano-shape plot of U_(L) versusΩ,re-validatingΩas an effective descriptor for accurately predicting the high-activity NRR SACs even with complex coordination.Our study unravels the relationship between active-site structure and NRR performance via the descriptorΩ,which can be applied to other important sustainable electrocatalytic reactions involving activation of small molecules viaσ-donation andπ^(*)-backdonation mechanism.展开更多
In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ...In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.展开更多
Dynamic adsorption processes of reaction intermediates for alkaline hydrogen evolution(HER)catalysts are still confusing to understand.Here,we report a series of A-site ordered quadruple perovskite ruthenium-based ele...Dynamic adsorption processes of reaction intermediates for alkaline hydrogen evolution(HER)catalysts are still confusing to understand.Here,we report a series of A-site ordered quadruple perovskite ruthenium-based electrocatalysts ACu_(3)Ru_(4)O_(12)(A=Na,Ca,Nd,and La),with the target sample SrCu_(3)Ru_(4)O_(12)exhibiting a very low overpotential(46 mV@10 mA·cm^(-2))and excellent catalytic stability with little decays after 48-h durability test.Precise tuning A-site cations can change the average valence state of Cu and Ru,thus the plot of HER activity versus the average Ru valence number shows a volcano-type relationship.Density functional theory indicates that the Ru 4d orbitals of SrCu3Ru4O12possesses the most suitable d-band center position among the five samples,which might be the key parameter to determine the catalytic performance.Our work provides further insight into the discovering advanced,efficient hydrogen evolution catalysts through designing precise descriptor.展开更多
In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant featur...In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant feature transform (SIFT). First,the distance between SIFT features is included in the equations of the proximity matrix to measure the similarity between two feature points; then the normalized cross correlation (NCC) used in Scott s method,which has been modified with adaptive scale and orientation,...展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle str...This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle structures are defined in local blocks. Combining color information in HSV color space, we use angle structures to detect images. The internal correlations between neighboring pixels in angle structures are explored to form a feature vector. With angle structures as bridges, ASD extracts image features by integrating multiple information as a whole, such as color, texture, shape and spatial layout information. In addition, the proposed algorithm is efficient for image retrieval without any clustering implementation or model training. Experimental results demonstrate that ASD outperforms the other related algorithms.展开更多
Tracking images using shape descriptor can be more accurate than using other existing methods and it is most useful when the environment is complex. However the existing methods with shape descriptor get more labeled ...Tracking images using shape descriptor can be more accurate than using other existing methods and it is most useful when the environment is complex. However the existing methods with shape descriptor get more labeled parts to compare and detect the object in an image, which makes the computation more complicated. Thus, we need a trade-off between the accuracy and efficiency requirements. This paper aims to bridge this gap between the accuracy and efficiency requirements by using morphology method. To improve the original monochromatic object detecting system, we propose a new color descriptor to preprocess the image with polychromatic object. Experiments have been conducted and shown the proposed method has made a great improvement in the time complexity minimization comparing with the performances of the original detection algorithm.展开更多
The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different ci...The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different circuit parameters of the PWM buck converter have been analyzed. The method of using Fourier descriptor to extract output signals characteristics is put forward and proved to be a gist of identifying and classifying the behavior of DC DC converter. This method can establish a good foundation fo...展开更多
An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation tran...An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.展开更多
To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary stat...To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.展开更多
A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy...A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.展开更多
The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a...The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented. The dynamical compensator guarantees that the resultant colsed-loop system is admissible; furthermore, it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties. A numerical example shows the effect of the proposed method.展开更多
For a class of value-bounded uncertain descriptor large-scale interconnected systems, the decentralized robust H∞ descriptor output feedback control problem is investigated. A design method based on the bounded real ...For a class of value-bounded uncertain descriptor large-scale interconnected systems, the decentralized robust H∞ descriptor output feedback control problem is investigated. A design method based on the bounded real lemma is developed for a decentralized descriptor dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NLMI). It is proposed to solve the NLMI iteratively by the idea of homotopy, where some of the variables are fixed alternately at each iteration to reduce the NLMI to a linear matrix inequality (LMI). A given example shows the efficiency of this method .展开更多
In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametri...In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.展开更多
基金Deanship of Research and Graduate Studies at King Khalid University funded this work through Large Research Project under grant number RGP2/54/45.
文摘Retinal Optical Coherence Tomography (OCT) images, a non-invasive imaging technique, have become a standard retinal disease detection tool. Due to disease, there are morphological and textural changes in the layers of the retina. Classifying OCT images is challenging, as the morphological manifestations of different diseases may be similar. The OCT images capture the reflectivity characteristics of the retinal tissues. Retinal diseases change the reflectivity property of retinal tissues, resulting in texture variations in OCT images. We propose a hybrid approach to OCT image classification in which the Convolution Neural Network (CNN) model is trained using Multiple Neighborhood Local Ternary Pattern (MNLTP) texture descriptors of the OCT images dataset for a robust disease prediction system. Parallel deep CNN (PDCNN) is proposed to improve feature representation and generalizability. The MNLTP-PDCNN model is tested on two publicly available datasets. The parameter values Accuracy, Precision, Recall, and F1-Score are calculated. The best accuracy obtained specifying the model’s overall performance is 93.98% and 99% for the NEH and OCT2017 datasets, respectively. With the proposed architecture, comparable performance is obtained with a subset of the original OCT2017 data set and a comparatively smaller number of trainable parameters (1.6 million, 1.8 million, and 2.3 million for a single CNN branch, two parallel CNN branches, and three parallel network branches, respectively), compared to off-the-shelf CNN models. Hence, the proposed approach is suitable for real-time OCT image classification systems with fast training of the CNN model and reduced memory requirement for computations.
基金founded by the National Science and Technology Council(Taiwan)under contract NSTC113-2221-E-019-032.
文摘An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.
基金supported by the National Natural Science Foundation of China,China(No.61801491)。
文摘Multi-modal image matching is crucial in aerospace applications because it can fully exploit the complementary and valuable information contained in the amount and diversity of remote sensing images.However,it remains a challenging task due to significant non-linear radiometric,geometric differences,and noise across different sensors.To improve the performance of heterologous image matching,this paper proposes a normalized self-similarity region descriptor to extract consistent structural information.We first construct the pointwise self-similarity region descriptor based on the Euclidean distance between adjacent image blocks to reflect the structural properties of multi-modal images.Then,a linear normalization approach is used to form Modality Independent Region Descriptor(MIRD),which can effectively distinguish structural features such as points,lines,corners,and flat between multi-modal images.To further improve the matching accuracy,the included angle cosine similarity metric is adopted to exploit the directional vector information of multi-dimensional feature descriptors.The experimental results show that the proposed MIRD has better matching accuracy and robustness for various multi-modal image matching than the state-of-the-art methods.MIRD can effectively extract consistent geometric structure features and suppress the influence of SAR speckle noise using non-local neighboring image blocks operation,effectively applied to various multi-modal image matching.
基金supported by the National Natural Science Foundation of China[grant numbers 42071450 and 42001415].
文摘Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the patterns of interchanges,which are indispensable parts of urban road networks.In the SC-GCNN model,an interchange is modeled as a graph,wherein nodes and edges represent the interchange segments and their connections,respectively.Then,a novel SC descriptor is implemented to describe the contextual information of each interchange segment and serve as descriptive features of graph nodes.Finally,a GCNN is designed by combining graph convolution and pooling operations to process the constructed graphs and classify the interchange patterns.The SC-GCNN model was validated using interchange samples obtained from the road networks of 15 cities downloaded from OpenStreetMap.The classification accuracy was 87.06%,which was higher than that of the image-based AlexNet,GoogLeNet,and Random Forest models.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金supported by the National Natural Science Foundation of China (21673137)。
文摘The catalytic descriptor with operational feasibility is highly desired towards rational design of high-performance catalyst especially the electrode/electrolyte solution interface working under mild conditions.Herein,we demonstrate that the descriptorΩparameterized by readily accessible intrinsic properties of metal center and coordination is highly operational and efficient in rational design of single-atom catalyst(SAC)for driving electrochemical nitrogen reduction(NRR).Using twodimensional metal(M)-B_(x)P_(y)S_(z)N_m@C_(2)N as prototype SAC models,we reveal that^(*)N_(2)+(H~++e~-)→^(*)N_(2)H acts predominantly as the potential-limiting step(PLS)of NRR on M-B_(2)P_(2)S_(2)@C_(2)N and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N regardless of the distinction in coordination microenvironment.Among the 28 screened M active sites,withΩvalues close to the optimal 4,M-B_(2)P_(2)S_(2)@C_(2)N(M=V(Ω=3.53),Mo(Ω=5.12),and W(Ω=3.92))and M-B_(1)P_(1)S_(1)N_(3)@C_(2)N(M=V(Ω=3.00),Mo(Ω=4.34),and W(Ω=3.32))yield the lowered limiting potential(U_(L))as-0.45,-0.54.-0.36,-0.58,-0.25,and-0.24 V,respectively,thus making them the promising NRR catalysts.More importantly,these SACs are located around the top of volcano-shape plot of U_(L) versusΩ,re-validatingΩas an effective descriptor for accurately predicting the high-activity NRR SACs even with complex coordination.Our study unravels the relationship between active-site structure and NRR performance via the descriptorΩ,which can be applied to other important sustainable electrocatalytic reactions involving activation of small molecules viaσ-donation andπ^(*)-backdonation mechanism.
基金National Natural Science Foundation of China,Grant/Award Numbers:62063004,62350410483Key Research and Development Project of Hainan Province,Grant/Award Number:ZDYF2021SHFZ093Zhejiang Provincial Postdoctoral Science Foundation,Grant/Award Number:ZJ2021028。
文摘In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.
基金Project supported financially by the National Key Research and Development Program of China(Grant No.2023YFA1406000)the National Natural Science Foundation of China(Grant Nos.22171283 and 12474002)+3 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.2023ZCJH03 and 2021XD-A041)the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications,China)the Teaching Reform Projects at BUPT(Grant No.2022CXCYB03)the BUPT Excellent Ph.D.Students Foundation(Grant No.CX2023108)。
文摘Dynamic adsorption processes of reaction intermediates for alkaline hydrogen evolution(HER)catalysts are still confusing to understand.Here,we report a series of A-site ordered quadruple perovskite ruthenium-based electrocatalysts ACu_(3)Ru_(4)O_(12)(A=Na,Ca,Nd,and La),with the target sample SrCu_(3)Ru_(4)O_(12)exhibiting a very low overpotential(46 mV@10 mA·cm^(-2))and excellent catalytic stability with little decays after 48-h durability test.Precise tuning A-site cations can change the average valence state of Cu and Ru,thus the plot of HER activity versus the average Ru valence number shows a volcano-type relationship.Density functional theory indicates that the Ru 4d orbitals of SrCu3Ru4O12possesses the most suitable d-band center position among the five samples,which might be the key parameter to determine the catalytic performance.Our work provides further insight into the discovering advanced,efficient hydrogen evolution catalysts through designing precise descriptor.
基金National High-tech Research and Development Program (2007AA01Z314)National Natural Science Foundation of China (60873085)
文摘In order to obtain a large number of correct matches with high accuracy,this article proposes a robust wide baseline point matching method,which is based on Scott s proximity matrix and uses the scale invariant feature transform (SIFT). First,the distance between SIFT features is included in the equations of the proximity matrix to measure the similarity between two feature points; then the normalized cross correlation (NCC) used in Scott s method,which has been modified with adaptive scale and orientation,...
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
基金supported by the National Natural Science Foundation of China (No.61170145, 61373081, 61402268, 61401260, 61572298)the Technology and Development Project of Shandong (No.2013GGX10125)+1 种基金the Natural Science Foundation of Shandong China (No.BS2014DX006, ZR2014FM012)the Taishan Scholar Project of Shandong, China
文摘This paper presents an efficient image feature representation method, namely angle structure descriptor(ASD), which is built based on the angle structures of images. According to the diversity in directions, angle structures are defined in local blocks. Combining color information in HSV color space, we use angle structures to detect images. The internal correlations between neighboring pixels in angle structures are explored to form a feature vector. With angle structures as bridges, ASD extracts image features by integrating multiple information as a whole, such as color, texture, shape and spatial layout information. In addition, the proposed algorithm is efficient for image retrieval without any clustering implementation or model training. Experimental results demonstrate that ASD outperforms the other related algorithms.
文摘Tracking images using shape descriptor can be more accurate than using other existing methods and it is most useful when the environment is complex. However the existing methods with shape descriptor get more labeled parts to compare and detect the object in an image, which makes the computation more complicated. Thus, we need a trade-off between the accuracy and efficiency requirements. This paper aims to bridge this gap between the accuracy and efficiency requirements by using morphology method. To improve the original monochromatic object detecting system, we propose a new color descriptor to preprocess the image with polychromatic object. Experiments have been conducted and shown the proposed method has made a great improvement in the time complexity minimization comparing with the performances of the original detection algorithm.
文摘The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different circuit parameters of the PWM buck converter have been analyzed. The method of using Fourier descriptor to extract output signals characteristics is put forward and proved to be a gist of identifying and classifying the behavior of DC DC converter. This method can establish a good foundation fo...
基金The National Natural Science Foundation of China(No.61170116,61375010,60973064)
文摘An effective shape signature namely multi-level included angle functions MIAFs is proposed to describe the hierarchy information ranging from global information to local variations of shape.Invariance to rotation translation and scaling are the intrinsic properties of the MIAFs.For each contour point the multi-level included angles are obtained based on the paired line segments derived from unequal-arc-length partitions of contour.And a Fourier descriptor derived from multi-level included angle functions MIAFD is presented for efficient shape retrieval.The proposed descriptor is evaluated with the standard performance evaluation method on three shape image databases the MPEG-7 database the Kimia-99 database and the Swedish leaf database. The experimental results of shape retrieval indicate that the MIAFD outperforms the existing Fourier descriptors and has low computational complexity.And the comparison of the MIAFD with other shape description methods also shows that the proposed descriptor has the highest precision at the same recall value which verifies its effectiveness.
基金supported by the National Natural Science Foundation of China (60874054)
文摘To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.
文摘A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.
基金This work was supported by the Chinese National Outstanding Youth Science Foundation (No.69925308).
文摘The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented. The dynamical compensator guarantees that the resultant colsed-loop system is admissible; furthermore, it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties. A numerical example shows the effect of the proposed method.
基金This work was supported by the National Natural Science Foundation of China (No.60474003) the Doctor Subject Foundation of China (No.20050533028).
文摘For a class of value-bounded uncertain descriptor large-scale interconnected systems, the decentralized robust H∞ descriptor output feedback control problem is investigated. A design method based on the bounded real lemma is developed for a decentralized descriptor dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NLMI). It is proposed to solve the NLMI iteratively by the idea of homotopy, where some of the variables are fixed alternately at each iteration to reduce the NLMI to a linear matrix inequality (LMI). A given example shows the efficiency of this method .
文摘In this paper eigenstructure assignment via proportional-plus-derivative feedback is investigated for a class of second-order descriptor linear systems. Under certain conditions, simple, general and complete parametric solutions of both finite closed-loop eigenvector matrices and feedback gain matrices are derived. The parametric approach utilizes directly original system data, involves manipulations only on n-dimensional matrices, and reveals all the design degrees of freedom which can be further utilized to achieve certain additional system specifications. A numerical example shows the effect of the proposed approach.