Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni...Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.展开更多
Dear Editor,This letter presents a latent-factorization-of-tensors(LFT)-incorporated battery cycle life prediction framework.Data-driven prognosis and health management(PHM)for battery pack(BP)can boost the safety and...Dear Editor,This letter presents a latent-factorization-of-tensors(LFT)-incorporated battery cycle life prediction framework.Data-driven prognosis and health management(PHM)for battery pack(BP)can boost the safety and sustainability of a battery management system(BMS),which relies heavily on the quality of the measured BP data like the voltage(V),current(I),and temperature(T).展开更多
Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in re...Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.展开更多
The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with c...The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.展开更多
The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite fo...The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention.展开更多
The lattice expansion caused by the reduction of Ce(Ⅳ)to Ce(Ⅲ)impeded the development of the CeO_(2)as an effective electrode material for electrochemical supercapacitors.Herein,we prepared CeO_(2)-clay composites t...The lattice expansion caused by the reduction of Ce(Ⅳ)to Ce(Ⅲ)impeded the development of the CeO_(2)as an effective electrode material for electrochemical supercapacitors.Herein,we prepared CeO_(2)-clay composites through a one-step hydrothermal method.The interlayer structures of clays efficiently accommodate volume changes induced by crystal lattice expansion to achieve ultra-long cycle stability.After 60000 charge-discharge cycles,the capacitance retention rate of the assembled asymmetric supercapacitors is as high as~-100%.The key findings of this work reveal the potential application of clays in achieving ultralong cycle stability of the CeO_(2)electrode material,paving the way for further application of the CeO_(2)in electrochemical energy storage.展开更多
Li-ion hybrid capacitors(LIHCs),composing of a lithium-ion battery(LIB) type anode and a supercapacitor(SC) type cathode,gained worldwide popularity due to harmonious integrating the virtues of high energy densi...Li-ion hybrid capacitors(LIHCs),composing of a lithium-ion battery(LIB) type anode and a supercapacitor(SC) type cathode,gained worldwide popularity due to harmonious integrating the virtues of high energy density of LIBs with high power density of SCs.Herein,nanoflakes composed microflower-like Co-Ni oxide(CoNiO) was successfully synthesized by a simple co-precipitation method.The atomic ratio of as-synthesized CoNiO is determined to be 1:3 through XRD and XPS analytical method.As a typical battery-type material,CoNiO and capacitor-type activated polyanilinederived carbon(APDC) were used to assemble LIHCs as the anode and cathode materials,respectively.As a result,when an optimized mass ratio of CoNiO and APDC was 1:2,CoNiO//APDC LIHC could deliver a maximum energy density of 143 Wh kg^-1 at a working voltage of 1-4 V.It is worth mentioning that the LIHC also exhibits excellent cycle stability with the capacitance retention of -78.2%after 15,000 cycles at a current density of 0.5 A g^-1.展开更多
The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side react...The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance.展开更多
The geometry of solder joint in SMT is one of the important factors whichdetermine the solder joint reliability. In this study, a type of solder joint specimen has beendesigned and is subjected to thermal cycling to f...The geometry of solder joint in SMT is one of the important factors whichdetermine the solder joint reliability. In this study, a type of solder joint specimen has beendesigned and is subjected to thermal cycling to failure between -55 ℃ to +125 ℃ with a 36℃/min heating and cooling rate and 10 min temperature holding times. The solder jointgeometry is castellated and controlled with different solder fillet shape and stand off height.A statistical analysis of the scattered thermal cycle lives of solder joints by two parameterWeibull's probability density function has been carried out in this paper. The experimentalresults show that the more reliable solder joint geometry has flat or slight convex solderfillet with a stand off height larger than 0.1 mm. The results may be the recommendedguideline to design optimal solder joint geometry.展开更多
The application of Si as the anode materials for lithium-ion batteries(LIBs) is still severely hindered by the rapid capacity decay due to the structural damage caused by large volume change(> 300%) during cycling....The application of Si as the anode materials for lithium-ion batteries(LIBs) is still severely hindered by the rapid capacity decay due to the structural damage caused by large volume change(> 300%) during cycling. Herein, a three-dimensional(3 D) aerogel anode of Si@carbon@graphene(SCG) is rationally constructed via a polydopamine-assisted strategy. Polydopamine is coated on Si nanoparticles to serve as an interface linker to initiate the assembly of Si and graphene oxide, which plays a crucial role in the successful fabrication of SCG aerogels. After annealing the polydopamine is converted into N-doped carbon(N-carbon) coatings to protect Si materials. The dual protection from N-carbon and graphene aerogels synergistically improves the structural stability and electronic conductivity of Si, thereby leading to the significantly improved lithium storage properties. Electrochemical tests show that the SCG with optimized graphene content delivers a high capacity(712 m Ah/g at 100 m A/g) and robust cycling stability(402 m Ah/g at 1 A/g after 1500 cycles). Furthermore, the full cell using SCG aerogels as anode exhibits a reversible capacity of 187.6 m Ah/g after 80 cycles at 0.1 A/g. This work provides a plausible strategy for developing Si anode in LIBs.展开更多
Hydrous ruthenium oxide(h-Ru O)nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT)were synthesized by a simple hydrothermal method and proved to have potential application as hybrid superca...Hydrous ruthenium oxide(h-Ru O)nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT)were synthesized by a simple hydrothermal method and proved to have potential application as hybrid supercapacitor material.The h-Ru Oand h-Ru O/MWCNT were characterized for their physico-chemical properties by PXRD,BET surface area,Raman,SEM-EDS and TEM techniques.The electrochemical performance of the materials were investigated,specific capacitance(Cs)of h-Ru Oand hRu O/MWCNT estimated by their cyclic voltammetric studies were found to be 604 and 1585 F/g respectively at a scan rate of 2 m V/s in the potential range 0–1.2 V.Further,this value was found to be nearly three times higher than that of pure h-Ru O.An asymmetric supercapacitor(AS)device was fabricated by employing h-Ru O/MWCNT as the positive electrode and activated carbon as the negative electrode.The device exhibited Cs of 61.8 F/g at a scan rate of 2 m V/s.Further,the device showed excellent long term stability for 20,000 cycles with 88%capacitance retention at a high current density of 25 A/g.展开更多
The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conven...The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conventional LIBs anode materials. Hence, we report amorphous ternary phosphorus chalcogenide(aP_(4)SSe_(2)) as an anode material with high performance for LIBs. Synthesized via the mechanochemistry method, the a-P_(4)SSe_(2) compound is endowed with amorphous feature and offers excellent cycling stability(over 1500 mA h g^(-1) capacity after 425 cycles at 0.3 A g^(-1)), owing to the advantages of isotropic nature and synergistic effect of multielement forming Li-ion conductors during battery operation. Furthermore,as confirmed by ex situ X-ray diffraction(XRD) and transmission electron microscope(TEM), the a-P_(4)SSe_(2)anode material has a reversible and multistage Li-storage mechanism, which is extremely beneficial to long cycle life for batteries. Moreover, the autogenous intermediate electrochemical products with fast ionic conductivity can facilitate Li-ion diffusion effectively. Thus, the a-P_(4)SSe_(2)electrode delivers excellent rate capability(730 mA h g^(-1)capacity at 3 A g^(-1)). Through in situ electrochemical impedance spectra(EIS) measurements, it can be revealed that the resistances of charge transfer(R_(SEI)) and solid electrolyte interphase(R_(Ct)) decrease along with the formation of Li-ion conductors whilst the ohmic resistance(R_(Ω)) remains unchanged during the whole electrochemical process, thus resulting in rapid reaction kinetics and stable electrode to obtain excellent rate performance and cycling ability for LIBs. Moreover, the formation mechanism and electrochemical superiority of the a-P_(4)SSe_(2)phase, and its expansion to P_(4)S_(3-x)Se_(x)(x = 0, 1, 2, 3) family can prove its significance for LIBs.展开更多
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
Currently,there has been significant research interest in the study of dual-ion batteries(DIBs)and hybrid dual-ion capacitors(HDICs),which utilize organic anion and metal cation reversibly stores in the cathodes and a...Currently,there has been significant research interest in the study of dual-ion batteries(DIBs)and hybrid dual-ion capacitors(HDICs),which utilize organic anion and metal cation reversibly stores in the cathodes and anodes,respectively.Nevertheless,there is a scarcity of reported DIBs or HDICs that rely on organic anions and organic cations,because the reversible storage of bulk cations is more difficult than the storage of metal cations.In this study,we provide a dual ion configuration that is ecologically beneficial,achieved by the utilization of organic-cation and organic-anion reactions on the electrodes.Remarkably,the electrochemical performance of the organic-cation based nonmetal hybrid dual-ion capacitor(ONHDIC)is noteworthy,as it demonstrates a discharge capacity of∼87 mAh g^(-1) at 2 C and a capacity retention of 91%after 700 cycles at 5 C.In addition,ONHDIC exhibits enhanced ion diffusion coefficient at elevated temperatures and demonstrates a higher discharge specific capacity of∼95 mAh g^(-1) at 2 C within the temperature range of 50–60℃.The corresponding energy density calculated based on the cathode is 201.56 Wh kg^(-1) at 50℃.In the context of a proof-of-concept,the ONHDIC pouch cell demonstrates remarkable stability and safety when subjected to continuous hammering,drilling,and destructive cutting tests.This demonstrates its promising potential for applications that prioritize environmental sustainability and safety.展开更多
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch...China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.展开更多
Binary alloys have garnered significant attention for the development of the sodium-ion battery due to their ability to combine the advantages of single-phase alloys.However,these materials often demonstrate limited e...Binary alloys have garnered significant attention for the development of the sodium-ion battery due to their ability to combine the advantages of single-phase alloys.However,these materials often demonstrate limited electrochemical performance,and the relationship between their crystallization states and their sodium storage properties remains poorly understood.Here,we synthesize Bi-Sn binary alloys with various compositions via phase-separation metallurgy to explore the sodium storage properties of different crystalline structures.The results indicate that hypo-and hyper-eutectic Bi-Sn alloys readily form a“dendritic”primary phase at the non-eutectic interface,which aggravates structural degradation and increases internal resistance.In contrast,Bi-Sn alloys with optimized eutectic interfaces effectively control dendritic growth and reduce defects,resulting in enhanced microstructural stability and superior electrochemical performance.As results,the eutectic p-Bi_(57)Sn_(43)@C anode achieves a record-high specific capacity of 470.3 mAh g^(-1) at 1 C and exhibits remarkable long-term cycling stability,retaining 95.2%of its capacity after 1000 cycles at 20 C.The defect-free eutectic concept presented here establishes a valuable foundation for future studies of binary and polycrystalline eutectic alloys in electrochemical applications.展开更多
With the increasingly serious environmental problems,the use of sustainable materials is particularly important.This study focuses on the greenhouse gas emissions and economic costs of wood over its life cycle as a su...With the increasingly serious environmental problems,the use of sustainable materials is particularly important.This study focuses on the greenhouse gas emissions and economic costs of wood over its life cycle as a sustainable resource.We use a systematic life cycle assessment(LCA)approach to assess the entire process from raw material collection,processing,use to disposal.The study found that using wood can significantly reduce greenhouse gas emissions compared to traditional building materials such as steel and concrete.In addition,although the initial procurement costs of wood may be higher,its maintenance costs are lower in the long run,making the life cycle costs generally more economical.The results of this study highlight the environmental and economic advantages of wood in the selection of sustainable building materials,and provide a scientific basis for promoting the use of wood.展开更多
The degradation of Lithium-ion batteries(LIBs)during cycling is particularly exacerbated at low temperatures,which has a significant impact on the longevity of electric vehicles,energy storage systems,and consumer ele...The degradation of Lithium-ion batteries(LIBs)during cycling is particularly exacerbated at low temperatures,which has a significant impact on the longevity of electric vehicles,energy storage systems,and consumer electronics.A comprehensive understanding of the low-temperature aging mechanisms throughout the whole life cycle of LIBs is crucial.However,existing research is limited,which typically focuses on capacity degradation to 80%.To fill this gap,this paper conducts low-temperature cyclic aging tests at three different charging rates.The investigation employs differential voltage analysis,the distribution of relaxation times technique,and disassembly characterization to explore both thermodynamic degradation and kinetic degradation,alongside a correlation analysis of the factors influencing these degradation processes.The results reveal two distinct knee points in the capacity decline of LIBs during the whole life cycle,in contrast to prior studies identifying only one.Before the first knee point,the thickening of the SEI film dominates capacity loss,with higher charging rates accelerating the process.After the first knee point,the main degradation mechanisms shift to lithium plating and the fracture of the positive electrode active particles.These two aging factors become more pronounced with ongoing cycling,culminating in a second knee point in capacity decline.Notably,a novel finding demonstrates that after the second knee point,capacity degradation progresses faster at lower charging rates compared to medium rates.The reason is the fracture of graphite particles also becomes a critical contributor to the severe capacity degradation at lower charging rates.These insights will guide the designs of next-generation low-temperature LIBs and low-temperature battery management systems.展开更多
Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained promi...Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained prominence across various engineering sectors,including the manufacturing and construction industries.Specifically,road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years.This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies,such as model creation,condition sensing,data processing,and interaction,as well as its applications throughout the lifecycle of road infrastructure.The findings indicate that research has primarily focused on data perception and virtual model creation,while realtime data processing and interaction between physical and virtual models remain underexplored.DT in road engineering has been predominantly applied during the operation and maintenance phases,with limited attention given to the construction and demolition phases.Future efforts should focus on establishing uniform standards,developing innovative perception and data interaction techniques,optimizing development costs,and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering.This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.展开更多
From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of l...From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of lithium trade grew rapidly,reaching 121116 t in 2019.Lithium trade was dominated by lithium minerals,lithium carbonate and lithium hydroxide rather than final lithium products,indicating an immaturity in global lithium industry.At the intercontinental level,Asia’s import trade and Oceania’s export trade led the world,accounting for 81.22%and 39.68%,respectively.At the national level,China,Japan and Korea became the main importers,while Chile and Australia were the main exporters.In addition,China’s trade volume far exceeded that of the United States.China’s exports were dominated by lithium-ion batteries,while the United States mainly imported lithium-ion batteries,proving that the development of China’s lithium industry was relatively faster.展开更多
基金supported by the Significant Science and Technology Project in Xiamen(Future Industry Field)(Grant No.3502Z20231057).
文摘Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.
文摘Dear Editor,This letter presents a latent-factorization-of-tensors(LFT)-incorporated battery cycle life prediction framework.Data-driven prognosis and health management(PHM)for battery pack(BP)can boost the safety and sustainability of a battery management system(BMS),which relies heavily on the quality of the measured BP data like the voltage(V),current(I),and temperature(T).
基金supported by the National Natural Science Foundation of China(No.52401221)Shandong Provincial Natural Science Foundation,China(No.ZR2022QE014)+1 种基金the Basic Scientific Research Fund for Central Universities(No.202112018)the Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education)。
文摘Lithium(Li)metal is considered the most promising anode material for the next generation of secondary batteries due to its high theoretical specific capacity and low potential.However,the application of Li anode in rechargeable Li metal batteries(LMBs)is hindered due to the short cycle life caused by uncontrolled dendrite growth.In this work,a dendrite-free anode(Li–Sn/Cu)is reinforced synergistically by lithophilic alloy,and a 3D grid structure is designed.Li^(+)diffusion and uniform nucleation are effectively induced by the lithophilic alloy Li_(22)Sn_(5).Moreover,homogeneous deposition of Li^(+)is caused by the reversible gridded Li plating/stripping effect of Cu mesh.Furthermore,the local space electric field is redistributed throughout the 3D conductive network,whereby the tip effect is suppressed,thus inhibiting the growth of Li dendrites.Also,the volume expansion of the anode during cycling is eased by the 3D grid structure.The results show that the Li–Sn/Cu symmetric battery can stably cycle for more than 10,000 h at 2 mA.cm^(-2)and 1 mAh.cm^(-2)with a low overpotential.The capacity retention of the LiFePO_(4)full battery remains above 90.7%after 1,000 cycles at 1C.This work provides a facile,low-cost,and effective strategy for obtaining Li metal batteries with ultra-long cycle life.
文摘The traction battery cycle life prediction method using performance degradation data was proposed. The example battery was a commercialized lithium-ion cell with LiMn2O4/Graphite cell system. The capacity faded with cycle number follows a traction function path. Two cycle life predicting models were established. The possible cycle life was extrapolated, which follows normal distribution well. The distribution parameters were estimated and the battery reliability was evaluated. The models' precision was validated and the effect of the cycle number on the predicting precision was analysed. The cycle life models and reliability evaluation method resolved the difficulty of battery life appraisal, such as long period and high cost.
基金supported by the National Key R&D Program of China (Grant no. 2016YFB0100105)the National Natural Science Foundation of China (Grant no. 51872303)+1 种基金Zhejiang Provincial Natural Science Foundation of China (Grant no. LD18E020004, LQ16E020003, LY18E020018, LY18E030011)Youth Innovation Promotion Association CAS (2017342)
文摘The main challenges in development of traditional liquid lithium-sulfur batteries are the shuttle effect at the cathode caused by the polysulfide and the safety concern at the Li metal anode arose from the dendrite formation.All-solid-state lithium-sulfur batteries have been proposed to solve the shuttle effect and prevent short circuits.However,solid-solid contacts between the electrodes and the electrolyte increase the interface resistance and stress/strain,which could result in the limited electrochemical performances.In this work,the cathode of all-solid-state lithium-sulfur batteries is prepared by depositing sulfur on the surface of the carbon nanotubes(CNTs@S)and further mixing with Li10GeP2S12 electrolyte and acetylene black agents.At 60℃,CNTs@S electrode exhibits superior electrochemical performance,delivering the reversible discharge capacities of 1193.3,959.5,813.1,569.6 and 395.5 mAhg^-1 at the rate of 0.1,0.5,1,2 and 5 C,respectively.Moreover,the CNTs@S is able to demonstrate superior high-rate capability of 660.3 mAhg^-1 and cycling stability of 400 cycles at a high rate of 1.0 C.Such uniform distribution of the CNTs,S and Li10GeP2S12 electrolyte increase the electronic and ionic conductivity between the cathode and the electrolyte hence improves the rate performance and capacity retention.
基金supported by the Science and Technology Project of Sichuan Province(2020YJ0163)。
文摘The lattice expansion caused by the reduction of Ce(Ⅳ)to Ce(Ⅲ)impeded the development of the CeO_(2)as an effective electrode material for electrochemical supercapacitors.Herein,we prepared CeO_(2)-clay composites through a one-step hydrothermal method.The interlayer structures of clays efficiently accommodate volume changes induced by crystal lattice expansion to achieve ultra-long cycle stability.After 60000 charge-discharge cycles,the capacitance retention rate of the assembled asymmetric supercapacitors is as high as~-100%.The key findings of this work reveal the potential application of clays in achieving ultralong cycle stability of the CeO_(2)electrode material,paving the way for further application of the CeO_(2)in electrochemical energy storage.
基金supported by the National Nature Science Foundations of China(Nos.21573265 and 51501208)
文摘Li-ion hybrid capacitors(LIHCs),composing of a lithium-ion battery(LIB) type anode and a supercapacitor(SC) type cathode,gained worldwide popularity due to harmonious integrating the virtues of high energy density of LIBs with high power density of SCs.Herein,nanoflakes composed microflower-like Co-Ni oxide(CoNiO) was successfully synthesized by a simple co-precipitation method.The atomic ratio of as-synthesized CoNiO is determined to be 1:3 through XRD and XPS analytical method.As a typical battery-type material,CoNiO and capacitor-type activated polyanilinederived carbon(APDC) were used to assemble LIHCs as the anode and cathode materials,respectively.As a result,when an optimized mass ratio of CoNiO and APDC was 1:2,CoNiO//APDC LIHC could deliver a maximum energy density of 143 Wh kg^-1 at a working voltage of 1-4 V.It is worth mentioning that the LIHC also exhibits excellent cycle stability with the capacitance retention of -78.2%after 15,000 cycles at a current density of 0.5 A g^-1.
基金research on high power flexible battery in all sea depth(Grant No.2020-XXXX-XX-246-00)。
文摘The present commercial spinel LiMn_(2)O_(4) delivers only 90 m Ah/g–115 m Ah/g,far lower than the theoretical specific capacity.It degrades fast caused by the Jahn–Teller effect,Mn dissolution and related side reactions that consume Li inventory.In this work,Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn_(2)O_(4).Li_(1.06)Mn_(1.94-x)Zr_xO_4(x=0,0.01,0.02,0.04)have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries(LIB).Li_(1.06)Mn_(1.92)Zr_(0.02)O_4 is superior cathode material with a high capacity of 122 m Ah/g at 1-C rate;long cycle stability,98.39%retention after 100 cycles at 1-C rate,excellent high rate performance 107.1 m Ah/g at 10-C rate,and high temperature performance 97.39%retention after 60 cycles.These are thought to be related to Zr doping effectively stabilizing the spinel LiMn_(2)O_(4),by forming stronger Zr–O bonds in the octahedron,suppressing the Jahn–Teller effect,thus improving electrochemical performance.
文摘The geometry of solder joint in SMT is one of the important factors whichdetermine the solder joint reliability. In this study, a type of solder joint specimen has beendesigned and is subjected to thermal cycling to failure between -55 ℃ to +125 ℃ with a 36℃/min heating and cooling rate and 10 min temperature holding times. The solder jointgeometry is castellated and controlled with different solder fillet shape and stand off height.A statistical analysis of the scattered thermal cycle lives of solder joints by two parameterWeibull's probability density function has been carried out in this paper. The experimentalresults show that the more reliable solder joint geometry has flat or slight convex solderfillet with a stand off height larger than 0.1 mm. The results may be the recommendedguideline to design optimal solder joint geometry.
基金financially supported by the National Natural Science Foundation of China (Nos. 51972182 and 61971252)the Shandong Provincial Natural Science Foundation (Nos. ZR2020JQ27 and ZR2019BF008)the Youth Innovation Team Project of Shandong Provincial Education Department (No. 2020KJN015)。
文摘The application of Si as the anode materials for lithium-ion batteries(LIBs) is still severely hindered by the rapid capacity decay due to the structural damage caused by large volume change(> 300%) during cycling. Herein, a three-dimensional(3 D) aerogel anode of Si@carbon@graphene(SCG) is rationally constructed via a polydopamine-assisted strategy. Polydopamine is coated on Si nanoparticles to serve as an interface linker to initiate the assembly of Si and graphene oxide, which plays a crucial role in the successful fabrication of SCG aerogels. After annealing the polydopamine is converted into N-doped carbon(N-carbon) coatings to protect Si materials. The dual protection from N-carbon and graphene aerogels synergistically improves the structural stability and electronic conductivity of Si, thereby leading to the significantly improved lithium storage properties. Electrochemical tests show that the SCG with optimized graphene content delivers a high capacity(712 m Ah/g at 100 m A/g) and robust cycling stability(402 m Ah/g at 1 A/g after 1500 cycles). Furthermore, the full cell using SCG aerogels as anode exhibits a reversible capacity of 187.6 m Ah/g after 80 cycles at 0.1 A/g. This work provides a plausible strategy for developing Si anode in LIBs.
基金financially supported by NRB-Naval Research Board(Project Number-NRB-290/MAT/12-13)
文摘Hydrous ruthenium oxide(h-Ru O)nanoparticles and its composite with multiwalled carbon nanotubes(h-Ru O/MWCNT)were synthesized by a simple hydrothermal method and proved to have potential application as hybrid supercapacitor material.The h-Ru Oand h-Ru O/MWCNT were characterized for their physico-chemical properties by PXRD,BET surface area,Raman,SEM-EDS and TEM techniques.The electrochemical performance of the materials were investigated,specific capacitance(Cs)of h-Ru Oand hRu O/MWCNT estimated by their cyclic voltammetric studies were found to be 604 and 1585 F/g respectively at a scan rate of 2 m V/s in the potential range 0–1.2 V.Further,this value was found to be nearly three times higher than that of pure h-Ru O.An asymmetric supercapacitor(AS)device was fabricated by employing h-Ru O/MWCNT as the positive electrode and activated carbon as the negative electrode.The device exhibited Cs of 61.8 F/g at a scan rate of 2 m V/s.Further,the device showed excellent long term stability for 20,000 cycles with 88%capacitance retention at a high current density of 25 A/g.
基金supported by the Regional Innovation and Development Joint Fundthe National Natural Science Foundation of China (Grant No. U20A20249)+1 种基金the Science and Technology Program of Guangdong Province of China (Grant No.2019A050510012, 2020A050515007, 2020A0505090001)the Guangzhou emerging industry development fund project of Guangzhou development and reform commission。
文摘The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conventional LIBs anode materials. Hence, we report amorphous ternary phosphorus chalcogenide(aP_(4)SSe_(2)) as an anode material with high performance for LIBs. Synthesized via the mechanochemistry method, the a-P_(4)SSe_(2) compound is endowed with amorphous feature and offers excellent cycling stability(over 1500 mA h g^(-1) capacity after 425 cycles at 0.3 A g^(-1)), owing to the advantages of isotropic nature and synergistic effect of multielement forming Li-ion conductors during battery operation. Furthermore,as confirmed by ex situ X-ray diffraction(XRD) and transmission electron microscope(TEM), the a-P_(4)SSe_(2)anode material has a reversible and multistage Li-storage mechanism, which is extremely beneficial to long cycle life for batteries. Moreover, the autogenous intermediate electrochemical products with fast ionic conductivity can facilitate Li-ion diffusion effectively. Thus, the a-P_(4)SSe_(2)electrode delivers excellent rate capability(730 mA h g^(-1)capacity at 3 A g^(-1)). Through in situ electrochemical impedance spectra(EIS) measurements, it can be revealed that the resistances of charge transfer(R_(SEI)) and solid electrolyte interphase(R_(Ct)) decrease along with the formation of Li-ion conductors whilst the ohmic resistance(R_(Ω)) remains unchanged during the whole electrochemical process, thus resulting in rapid reaction kinetics and stable electrode to obtain excellent rate performance and cycling ability for LIBs. Moreover, the formation mechanism and electrochemical superiority of the a-P_(4)SSe_(2)phase, and its expansion to P_(4)S_(3-x)Se_(x)(x = 0, 1, 2, 3) family can prove its significance for LIBs.
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.
基金financially supported by the National Key Re-search and Development Program of China(No.2022YFB2402600)the National Natural Science Foundation of China(No.52125105)+5 种基金the National Natural Science Foundation of China(NSFC)/Hong Kong Research Grants Council(RGC)Joint Research Scheme(Nos.N_CityU104/20 and 52061160484)the Science and Technology Planning Project of Guangdong Province(Nos.2021TQ05L894,2023A1515030160,and 2022A1515011778)the Shenzhen Science and Technology Planning Project(Nos.JSGG20211108092801002,JSGG20220831104004008,SGDX20230116092055008,and KCXST20221021111606016)the Research and Innovation Group of Guangdong University of Education(No.2024KYCXTD014)the Tertiary Education Scientific Research Project of Guangzhou Mu-nicipal Education Bureau(No.202234850)the Key Scientific Research Projects of General Universities in Guangdong Province(No.2021KCXTD086).
文摘Currently,there has been significant research interest in the study of dual-ion batteries(DIBs)and hybrid dual-ion capacitors(HDICs),which utilize organic anion and metal cation reversibly stores in the cathodes and anodes,respectively.Nevertheless,there is a scarcity of reported DIBs or HDICs that rely on organic anions and organic cations,because the reversible storage of bulk cations is more difficult than the storage of metal cations.In this study,we provide a dual ion configuration that is ecologically beneficial,achieved by the utilization of organic-cation and organic-anion reactions on the electrodes.Remarkably,the electrochemical performance of the organic-cation based nonmetal hybrid dual-ion capacitor(ONHDIC)is noteworthy,as it demonstrates a discharge capacity of∼87 mAh g^(-1) at 2 C and a capacity retention of 91%after 700 cycles at 5 C.In addition,ONHDIC exhibits enhanced ion diffusion coefficient at elevated temperatures and demonstrates a higher discharge specific capacity of∼95 mAh g^(-1) at 2 C within the temperature range of 50–60℃.The corresponding energy density calculated based on the cathode is 201.56 Wh kg^(-1) at 50℃.In the context of a proof-of-concept,the ONHDIC pouch cell demonstrates remarkable stability and safety when subjected to continuous hammering,drilling,and destructive cutting tests.This demonstrates its promising potential for applications that prioritize environmental sustainability and safety.
基金supported by Ningbo’s major scientific and technological breakthrough project“Research and Demonstration on the Technology of Collaborative Disposal of Secondary Ash in Typical Industrial Furnaces” (No.20212ZDYF020047)the central balance fund project“Research on Carbon Emission Accounting and Emission Reduction Potential Assessment for the Whole Life Cycle of Iron and Steel Industry” (No.2021-JY-07).
文摘China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.
基金supported by the National Natural Science Foundation of China(22309056,52002297 and U2004210)Knowledge Innovation Project of Wuhan City(2022010801010303)+3 种基金National Key R&D Program of China(2022YF2404800)Key R&D Projects of Hubei Province(2022BCA061)Application Foundation Frontier Project of Wuhan Science and Technology Program(2020010601012199)Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee(JCYJ20210324141613032)。
文摘Binary alloys have garnered significant attention for the development of the sodium-ion battery due to their ability to combine the advantages of single-phase alloys.However,these materials often demonstrate limited electrochemical performance,and the relationship between their crystallization states and their sodium storage properties remains poorly understood.Here,we synthesize Bi-Sn binary alloys with various compositions via phase-separation metallurgy to explore the sodium storage properties of different crystalline structures.The results indicate that hypo-and hyper-eutectic Bi-Sn alloys readily form a“dendritic”primary phase at the non-eutectic interface,which aggravates structural degradation and increases internal resistance.In contrast,Bi-Sn alloys with optimized eutectic interfaces effectively control dendritic growth and reduce defects,resulting in enhanced microstructural stability and superior electrochemical performance.As results,the eutectic p-Bi_(57)Sn_(43)@C anode achieves a record-high specific capacity of 470.3 mAh g^(-1) at 1 C and exhibits remarkable long-term cycling stability,retaining 95.2%of its capacity after 1000 cycles at 20 C.The defect-free eutectic concept presented here establishes a valuable foundation for future studies of binary and polycrystalline eutectic alloys in electrochemical applications.
文摘With the increasingly serious environmental problems,the use of sustainable materials is particularly important.This study focuses on the greenhouse gas emissions and economic costs of wood over its life cycle as a sustainable resource.We use a systematic life cycle assessment(LCA)approach to assess the entire process from raw material collection,processing,use to disposal.The study found that using wood can significantly reduce greenhouse gas emissions compared to traditional building materials such as steel and concrete.In addition,although the initial procurement costs of wood may be higher,its maintenance costs are lower in the long run,making the life cycle costs generally more economical.The results of this study highlight the environmental and economic advantages of wood in the selection of sustainable building materials,and provide a scientific basis for promoting the use of wood.
基金financially supported by the National Natural Science Foundation of China(NSFC,Grant number U20A20310)the Program of Shanghai Academic/Technology Research Leader(Grant number 22XD1423800)。
文摘The degradation of Lithium-ion batteries(LIBs)during cycling is particularly exacerbated at low temperatures,which has a significant impact on the longevity of electric vehicles,energy storage systems,and consumer electronics.A comprehensive understanding of the low-temperature aging mechanisms throughout the whole life cycle of LIBs is crucial.However,existing research is limited,which typically focuses on capacity degradation to 80%.To fill this gap,this paper conducts low-temperature cyclic aging tests at three different charging rates.The investigation employs differential voltage analysis,the distribution of relaxation times technique,and disassembly characterization to explore both thermodynamic degradation and kinetic degradation,alongside a correlation analysis of the factors influencing these degradation processes.The results reveal two distinct knee points in the capacity decline of LIBs during the whole life cycle,in contrast to prior studies identifying only one.Before the first knee point,the thickening of the SEI film dominates capacity loss,with higher charging rates accelerating the process.After the first knee point,the main degradation mechanisms shift to lithium plating and the fracture of the positive electrode active particles.These two aging factors become more pronounced with ongoing cycling,culminating in a second knee point in capacity decline.Notably,a novel finding demonstrates that after the second knee point,capacity degradation progresses faster at lower charging rates compared to medium rates.The reason is the fracture of graphite particles also becomes a critical contributor to the severe capacity degradation at lower charging rates.These insights will guide the designs of next-generation low-temperature LIBs and low-temperature battery management systems.
基金supported by the National Key Research and Development Program of China(2022YFB2602103 and 2023YFA1008900)。
文摘Road infrastructure is facing significant digitalization challenges within the context of new infrastructure construction in China and worldwide.Among the advanced digital technologies,digital twin(DT)has gained prominence across various engineering sectors,including the manufacturing and construction industries.Specifically,road engineering has demonstrated a growing interest in DT and has achieved promising results in DT-related applications over the past several years.This paper systematically introduces the development of DT and examines its current state in road engineering by reviewing research articles on DT-enabling technologies,such as model creation,condition sensing,data processing,and interaction,as well as its applications throughout the lifecycle of road infrastructure.The findings indicate that research has primarily focused on data perception and virtual model creation,while realtime data processing and interaction between physical and virtual models remain underexplored.DT in road engineering has been predominantly applied during the operation and maintenance phases,with limited attention given to the construction and demolition phases.Future efforts should focus on establishing uniform standards,developing innovative perception and data interaction techniques,optimizing development costs,and expanding the scope of lifecycle applications to facilitate the digital transformation of road engineering.This review provides a comprehensive overview of state-of-the-art advancements in this field and paves the way for leveraging DT in road infrastructure lifecycle management.
基金supported by the National Natural Science Foundation of China(Nos.71671187,71874210,71633006)the Natural Science Foundation of Hunan Province,China(No.2024JJ6539)+1 种基金the National Social Science Fund of China(No.22&ZD098)the Social Sciences Fund of Hunan Province,China(No.24YBQ138)。
文摘From a life cycle perspective,the material flow analysis is utilized to investigate the lithium material flows in international trade from 2000 to 2019.The results reveal that at the global level,the total volume of lithium trade grew rapidly,reaching 121116 t in 2019.Lithium trade was dominated by lithium minerals,lithium carbonate and lithium hydroxide rather than final lithium products,indicating an immaturity in global lithium industry.At the intercontinental level,Asia’s import trade and Oceania’s export trade led the world,accounting for 81.22%and 39.68%,respectively.At the national level,China,Japan and Korea became the main importers,while Chile and Australia were the main exporters.In addition,China’s trade volume far exceeded that of the United States.China’s exports were dominated by lithium-ion batteries,while the United States mainly imported lithium-ion batteries,proving that the development of China’s lithium industry was relatively faster.