A series of indium oxide‐modified Cu/SiO2catalysts were synthesized and used to produce ethanol via methyl acetate hydrogenation.In‐Cu/SiO2catalyst containing1.0wt%In2O3exhibited the best catalytic activity and stab...A series of indium oxide‐modified Cu/SiO2catalysts were synthesized and used to produce ethanol via methyl acetate hydrogenation.In‐Cu/SiO2catalyst containing1.0wt%In2O3exhibited the best catalytic activity and stability.The physicochemical properties of the synthesized catalysts were investigated using several characterization methods and the results showed that introducing suitable indium to Cu/SiO2increased the copper dispersion,diminished the copper crystallite size,and enriched the surface Cu+concentration.Furthermore,the Cu/SiO2catalyst gradually deactivated during the stability test,which was mainly attributed to copper sintering and the valence change in surface copper species.In contrast,indium addition can inhibit the thermal transmigration and accumulation of copper nanoparticles to stabilize the catalyst.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure a...Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.展开更多
The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. I...The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.展开更多
The Cu/SiO_2 catalysts were in situ synthesized by the hydrolysis of tetraethyl orthosilicate(TEOS) in one phase solution using ethanol as co-solvent or TEOS/H_2O two phases solution,followed by the precipitation of...The Cu/SiO_2 catalysts were in situ synthesized by the hydrolysis of tetraethyl orthosilicate(TEOS) in one phase solution using ethanol as co-solvent or TEOS/H_2O two phases solution,followed by the precipitation of copper on SiO_2 by ammonia evaporation. In the hydrogenation of dimethyl oxalate,the catalyst prepared by one phase hydrolysis exhibited higher activity and ethylene glycol(EG) selectivity at lower temperature than that of two phases due to its larger BET surface area and multimodal pore distribution.At 488-503 K,the catalyst prepared in one phase solution with water/ethanol(W/E) volume ratio of 3:1 exhibited 90- 95%EG selectivity,while catalyst prepared by two phase hydrolysis reached 90%EG selectivity only at 498-503 K.展开更多
Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel ...Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel method using TiOSO4 as a precursor. The experimental results showed that TiO2 nanopowders on the surface of SiO2 particles were well distributed and compact. The amount of TiO2 increased with the increase in coating layers. The shell structure appeared to be composed of anatase titania nanocrystals at 550℃. The 2-layer coated TiO2 particles on the surface showed a higher degradation rate compared with all the different-layer samples. The photocatalytic activity of Cu^2+-doped TiO2/SiO2 was higher than that ofundoped TiO2/SiO2. The optimum dopant content was about 0.10wt%.展开更多
Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane...Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane(TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual cop per loading of 19.0%(mass fraction).展开更多
The mechanism of dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst was investigated by in situ Fourier transform infrared (FTIR) spectroscopy. It was found that dimethyl oxalate and methyl glyc...The mechanism of dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst was investigated by in situ Fourier transform infrared (FTIR) spectroscopy. It was found that dimethyl oxalate and methyl glycolate proceeded via dissociative adsorption on Cu/SiO2 catalyst, and four main intermediates, CH3OC(O)(O)C-M (1655 cm-1), M-C(O)(O)C-M (1618 cm-1), HOCH2(O)C--M (1682 cm-1) and CH3O-M (2924-2926 cm-1), were identified during the reaction. It was concluded that dimethyl oxalate hydrogenation to ethylene glycol mainly proceeded along the route: dimethyl oxalate /rightarrow CH3OC(O)(O)C-M → methyl glycolate →HOCH2(O)C-M → ethylene glycol. Finally a schematic reaction network was proposed.展开更多
Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface wit...The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.展开更多
文摘A series of indium oxide‐modified Cu/SiO2catalysts were synthesized and used to produce ethanol via methyl acetate hydrogenation.In‐Cu/SiO2catalyst containing1.0wt%In2O3exhibited the best catalytic activity and stability.The physicochemical properties of the synthesized catalysts were investigated using several characterization methods and the results showed that introducing suitable indium to Cu/SiO2increased the copper dispersion,diminished the copper crystallite size,and enriched the surface Cu+concentration.Furthermore,the Cu/SiO2catalyst gradually deactivated during the stability test,which was mainly attributed to copper sintering and the valence change in surface copper species.In contrast,indium addition can inhibit the thermal transmigration and accumulation of copper nanoparticles to stabilize the catalyst.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Cu/SiO2 catalysts prepared by a convenient and efficient method using the urea hydrolysis deposition-precipitation (UHDP) technique have been proposed focusing on the effect of copper loading.The texture,structure and composition are systematically characterized by ICP,FTIR,N 2-physisorption,N2O chemisorption,TPR,XRD and XPS.The formation of copper phyllosilicate is observed in Cu/SiO2 catalyst by adopting UHDP method,and the amount of copper phyllosilicate is related to copper loading.It is found the structure properties and catalytic performance is profoundly affected by the amount of copper phyllosilicate.The excellent catalytic activity is attributed to the synergetic effect between Cu0 and Cu +.DMO conversion and EG selectivity are determined by the amount of Cu0 and Cu+,respectively.The proper copper loading (30 wt%) provides with the highest ratio of Cu + /Cu0,giving rise to the highest EG yield of 95% under the reaction conditions of p=2.0 MPa,T=473 K,H2/DMO=80 and LHSV=1.0h-1.
文摘The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.
基金supported by the International Science and Technology Cooperation Program(No 2009DFA61050)National High Technology Research and Development Program of China(863 program)(Nos 2007AA05Z334 & 2009AA05Z407)National Basic Research Program of China(No2007CB210200)
文摘The Cu/SiO_2 catalysts were in situ synthesized by the hydrolysis of tetraethyl orthosilicate(TEOS) in one phase solution using ethanol as co-solvent or TEOS/H_2O two phases solution,followed by the precipitation of copper on SiO_2 by ammonia evaporation. In the hydrogenation of dimethyl oxalate,the catalyst prepared by one phase hydrolysis exhibited higher activity and ethylene glycol(EG) selectivity at lower temperature than that of two phases due to its larger BET surface area and multimodal pore distribution.At 488-503 K,the catalyst prepared in one phase solution with water/ethanol(W/E) volume ratio of 3:1 exhibited 90- 95%EG selectivity,while catalyst prepared by two phase hydrolysis reached 90%EG selectivity only at 498-503 K.
基金the Department of Education of Hebei Province, China (No.2005362)
文摘Cu^2+-doped nanostructured TiO2-coated SiO2 (TiO2/SiO2) particles were prepared by the layer-by-layer assembly technique and their photocatalytic property was studied. TiO2 colloids were synthesized by the sol-gel method using TiOSO4 as a precursor. The experimental results showed that TiO2 nanopowders on the surface of SiO2 particles were well distributed and compact. The amount of TiO2 increased with the increase in coating layers. The shell structure appeared to be composed of anatase titania nanocrystals at 550℃. The 2-layer coated TiO2 particles on the surface showed a higher degradation rate compared with all the different-layer samples. The photocatalytic activity of Cu^2+-doped TiO2/SiO2 was higher than that ofundoped TiO2/SiO2. The optimum dopant content was about 0.10wt%.
基金Supported by the National Science and Technology Supporting Plan Through Contract, China(No.2011BAD22B06)the Zhejiang Provincial Natural Science Foundation, China(No. R1110089)+2 种基金the Fundamental Research Funds for the Central Univer-sities of China(No.2011FZA4012)the Research Fund for the Doctoral Program of Higher Education of China (No.20090101110034)the Zhejiang Provincial Key Science and Technology Innovation Team, China(No.2009R50012)
文摘Highly active and selective Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG) were successfully prepared by means of a convenient one-pot synthetic method with tetraethoxysi lane(TEOS) as the source of silica. XRD, H2-TPR, SEM, TEM, XRF and N2 physisorption measurements were performed to characterize the texture and structure of Cu/SiO2 catalysts with different copper loadings. The active components were highly dispersed on SiO2 supports. Furthermore, the coexistence of Cu0 and Cu+ contributed a lot to the excellent performance of Cu-TEOS catalysts. The DMO conversion reached 100% and the EG selectivity reached 95% at 498 K and 2 MPa with a high liquid hourly space velocity over the 27-Cu-TEOS catalyst with an actual cop per loading of 19.0%(mass fraction).
文摘The mechanism of dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst was investigated by in situ Fourier transform infrared (FTIR) spectroscopy. It was found that dimethyl oxalate and methyl glycolate proceeded via dissociative adsorption on Cu/SiO2 catalyst, and four main intermediates, CH3OC(O)(O)C-M (1655 cm-1), M-C(O)(O)C-M (1618 cm-1), HOCH2(O)C--M (1682 cm-1) and CH3O-M (2924-2926 cm-1), were identified during the reaction. It was concluded that dimethyl oxalate hydrogenation to ethylene glycol mainly proceeded along the route: dimethyl oxalate /rightarrow CH3OC(O)(O)C-M → methyl glycolate →HOCH2(O)C-M → ethylene glycol. Finally a schematic reaction network was proposed.
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
文摘The dynamic wetting of water spreading on TiO 2 and TiO 2 SiO 2 films prepared by sol gel method and subsequently treated by air plasma and UV irradiation was investigated. Water completely spread on TiO 2 surface within 3 s and its dynamic contact angles can be expressed by a power law θ d= k(t+a) -n with the n value 0.98. Less than 50%(molar fraction) SiO 2 addition can accelerate the dynamic water spreading rate on the TiO 2 SiO 2 films and the optimum molar fraction of SiO 2 amount corresponding to as annealed, air plasma, and UV irradiation treatment process is 15%, 10% and 20%, respectively.