To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, spa...To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.展开更多
The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathemati...The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection.展开更多
To characterize the clutter spectrum center-shift and spread of airborne radar caused by the platform motion, a novel Doppler Distributed Clutter (DDC) model is proposed to describe the clutter covariance matrix in te...To characterize the clutter spectrum center-shift and spread of airborne radar caused by the platform motion, a novel Doppler Distributed Clutter (DDC) model is proposed to describe the clutter covariance matrix in temporal domain. Based on this parametric model, maximum likelihood, subspace based method and other super- resolution methods are introduced into the Doppler parameters estimation, and more excellent performance is obtained than with the conventional approaches in frequency domain. The theoretical derivation and real experimental results are also provided to validate this novel model and methods of parameter estimating.展开更多
A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and ad...A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and adjust the increasing slope of reflectivity with respect to wind speed. In addition, it uses a constant factor to compensate the overall amplitude of clutter reflectivity. The performance of the modified GIT model has been verified on the basis of the L-band low-grazing-angle radar sea clutter data. The results are in good agreement with the experimental data, indicating that the model is more effective in predicting the wind-speed behavior of clutter reflectivity than the conventional GIT model, especially for lower and higher wind speeds. We believe that the proposed model can provide deeper insights into the relationship between radar sea clutter reflectivity and sea state conditions.展开更多
Constructing sophisticated refractivity models is one of the key problems for the RFC(refractivity from clutter)technology. If prior knowledge of the local refractivity environment is available, more accurate paramete...Constructing sophisticated refractivity models is one of the key problems for the RFC(refractivity from clutter)technology. If prior knowledge of the local refractivity environment is available, more accurate parameterized model can be constructed from the statistical information, which in turn can be used to improve the quality of the local refractivity retrievals. The validity of this proposal was demonstrated by range-dependent refractivity profile inversions using the adjoint parabolic equation method to the Wallops’ 98 experimental data.展开更多
The objective of this work was to compare estimates generated by a diametric distribution model and a total stand model against the pre-cut inventory.The model efficiency was also evaluated.Data were evaluated from 30...The objective of this work was to compare estimates generated by a diametric distribution model and a total stand model against the pre-cut inventory.The model efficiency was also evaluated.Data were evaluated from 30 permanent sample plots in a Eucalyptus urophylla stand,comprising 24 sample plots used for model fitting,and six sample plots for validation.The volume of wood per hectare was estimated for different productive units(sites),using 7 years as the reference age.The model adjustment quality was verified by adjustment and precision statistics:the correlation between observed and predicted variables,root mean square error percentage,graphical analysis of residual distribution,and a frequency histogram for classes of relative errors and validation.Although the two-parameter Weibull probability density function adhered to the data for tree evolution in diameter classes for the reference age(7 years)in the different productivity classes,it generated imprecise estimates of the number of individuals.Consequently,it produced inaccurate volumetric production estimates.The total stand model provided reliable projections of production volumes in different productivity classes for both adjustment types,showing compatibility with the pre-cut inventory according to a Tukey test.In summary,the total stand model generated estimates that were compatible with the pre-cut inventory while the diametric distribution model did not.展开更多
The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov ...The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.展开更多
基金supported by the National Defense Advanced Research Foundation of China (51407020304DZ0223).
文摘To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.
基金the National Natural Science Foundation of China(6187138461921001).
文摘The optimal selection of radar clutter model is the premise of target detection,tracking,recognition,and cognitive waveform design in clutter background.Clutter characterization models are usually derived by mathematical simplification or empirical data fitting.However,the lack of standard model labels is a challenge in the optimal selection process.To solve this problem,a general three-level evaluation system for the model selection performance is proposed,including model selection accuracy index based on simulation data,fit goodness indexs based on the optimally selected model,and evaluation index based on the supporting performance to its third-party.The three-level evaluation system can more comprehensively and accurately describe the selection performance of the radar clutter model in different ways,and can be popularized and applied to the evaluation of other similar characterization model selection.
文摘To characterize the clutter spectrum center-shift and spread of airborne radar caused by the platform motion, a novel Doppler Distributed Clutter (DDC) model is proposed to describe the clutter covariance matrix in temporal domain. Based on this parametric model, maximum likelihood, subspace based method and other super- resolution methods are introduced into the Doppler parameters estimation, and more excellent performance is obtained than with the conventional approaches in frequency domain. The theoretical derivation and real experimental results are also provided to validate this novel model and methods of parameter estimating.
基金Project supported by the National Natural Science Foundation of China(Grant No.61172031)
文摘A modified GIT model for describing the variational trend of mean clutter reflectivity as a function of wind speed is proposed. It uses two slope adjustment factors and two critical wind-speed factors to define and adjust the increasing slope of reflectivity with respect to wind speed. In addition, it uses a constant factor to compensate the overall amplitude of clutter reflectivity. The performance of the modified GIT model has been verified on the basis of the L-band low-grazing-angle radar sea clutter data. The results are in good agreement with the experimental data, indicating that the model is more effective in predicting the wind-speed behavior of clutter reflectivity than the conventional GIT model, especially for lower and higher wind speeds. We believe that the proposed model can provide deeper insights into the relationship between radar sea clutter reflectivity and sea state conditions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41775027 and 41405025)
文摘Constructing sophisticated refractivity models is one of the key problems for the RFC(refractivity from clutter)technology. If prior knowledge of the local refractivity environment is available, more accurate parameterized model can be constructed from the statistical information, which in turn can be used to improve the quality of the local refractivity retrievals. The validity of this proposal was demonstrated by range-dependent refractivity profile inversions using the adjoint parabolic equation method to the Wallops’ 98 experimental data.
基金supported by the University of Brasilia and the National Council for Scientific and Technological Development(CNPq)。
文摘The objective of this work was to compare estimates generated by a diametric distribution model and a total stand model against the pre-cut inventory.The model efficiency was also evaluated.Data were evaluated from 30 permanent sample plots in a Eucalyptus urophylla stand,comprising 24 sample plots used for model fitting,and six sample plots for validation.The volume of wood per hectare was estimated for different productive units(sites),using 7 years as the reference age.The model adjustment quality was verified by adjustment and precision statistics:the correlation between observed and predicted variables,root mean square error percentage,graphical analysis of residual distribution,and a frequency histogram for classes of relative errors and validation.Although the two-parameter Weibull probability density function adhered to the data for tree evolution in diameter classes for the reference age(7 years)in the different productivity classes,it generated imprecise estimates of the number of individuals.Consequently,it produced inaccurate volumetric production estimates.The total stand model provided reliable projections of production volumes in different productivity classes for both adjustment types,showing compatibility with the pre-cut inventory according to a Tukey test.In summary,the total stand model generated estimates that were compatible with the pre-cut inventory while the diametric distribution model did not.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41105013)the National Natural Science Foundation of Jiangsu Province,China (Grant No. BK2011122)+1 种基金the Open Issue Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education,China (Grant No. KLME1109)the City Meteorological Scientific Research Fund,China (Grant No. IUMKY&UMRF201111)
文摘The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.