To reduce the uncertainty associated with the traditional definition of tunnel boring machine(TBM)utilization(U)and achieve an effective indicator of TBM performance,a new performance indicator called rock mass-relate...To reduce the uncertainty associated with the traditional definition of tunnel boring machine(TBM)utilization(U)and achieve an effective indicator of TBM performance,a new performance indicator called rock mass-related utilization(U_(r))is introduced;this variable considers only rock mass-related factors rather than all potential factors.This work aims to predict U_(r)by adopting the rock mass rating(RMR)and the moisture-dependent Cerchar abrasivity index(CAI).Substantial U_(r),RMR and CAI data are acquired from a 31.57 km northwestern Chinese water conveyance tunnel via tunnelling field recordings,geological investigations and Cerchar abrasivity tests.The moisture dependence of the CAI is explored across four lithologies:quartz schists,granites,sandstones and metamorphic andesites.The potential influences of RMR and CAI on Ur are then investigated.As the RMR increases,U_(r)initially increases and then peaks at an RMR of 56 before declining.U_(r)appears to decline with CAI.An investigation-based relation among U_(r),RMR and moisture-dependent CAI is developed for estimating U_(r).The developed relation can accurately predict U_(r)using RMR and moisture-dependent CAI in the majority of the tunnelling cases examined.This work proposes a stable indicator of TBM performance and provided a fairly accurate prediction method for this indicator.展开更多
Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich stru...Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich structure are investigated and studied using experimental and numerical coupled methods.Three impact energy levels and five Distances Between Impact Positions(DBIP)are considered in details,and representative impact characteristics are compared to reveal the association between Compression After Impact(CAI)strength and DBIP.Results indicate that the interference between the multi-point impact events has a dominant effect on CAI strength when DBIP is small,and the variation in bending stiffness induced by the boundary effect is the dominant factor affecting CAI strength when DBIP ranges from 20 mm to 60 mm.In addition,matrix damage represents the primary damage mode in multi-point impact,and the calculated ratio of energy absorbed by the top face sheet and honeycomb core,in relation to the total absorbed energy,serves as a clear indicator of the damage severity experienced by both components.This work is enlightening for the structural design of impact-resistant composites.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.41972270,52076198)the Key Research and Development Plan of Henan Province(No.182102210014)+2 种基金the Excellent Youth Foundation of Henan Scientific Committee(No.222300420078)the Youth Talent Promotion Project of Henan Province(No.2022HYTP019)the Open Foundation of State Key Laboratory of Shield Machine and Boring Technology(No.SKLST-2019-K06)。
文摘To reduce the uncertainty associated with the traditional definition of tunnel boring machine(TBM)utilization(U)and achieve an effective indicator of TBM performance,a new performance indicator called rock mass-related utilization(U_(r))is introduced;this variable considers only rock mass-related factors rather than all potential factors.This work aims to predict U_(r)by adopting the rock mass rating(RMR)and the moisture-dependent Cerchar abrasivity index(CAI).Substantial U_(r),RMR and CAI data are acquired from a 31.57 km northwestern Chinese water conveyance tunnel via tunnelling field recordings,geological investigations and Cerchar abrasivity tests.The moisture dependence of the CAI is explored across four lithologies:quartz schists,granites,sandstones and metamorphic andesites.The potential influences of RMR and CAI on Ur are then investigated.As the RMR increases,U_(r)initially increases and then peaks at an RMR of 56 before declining.U_(r)appears to decline with CAI.An investigation-based relation among U_(r),RMR and moisture-dependent CAI is developed for estimating U_(r).The developed relation can accurately predict U_(r)using RMR and moisture-dependent CAI in the majority of the tunnelling cases examined.This work proposes a stable indicator of TBM performance and provided a fairly accurate prediction method for this indicator.
基金Supported by the National Key R&D Program of China(2023YFB3709602,2023YFB3709603)National Natural Science Foundation of China(12372141)the Key R&D Program in Shaanxi Province(2024GH-ZDXM-27).
文摘Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich structure are investigated and studied using experimental and numerical coupled methods.Three impact energy levels and five Distances Between Impact Positions(DBIP)are considered in details,and representative impact characteristics are compared to reveal the association between Compression After Impact(CAI)strength and DBIP.Results indicate that the interference between the multi-point impact events has a dominant effect on CAI strength when DBIP is small,and the variation in bending stiffness induced by the boundary effect is the dominant factor affecting CAI strength when DBIP ranges from 20 mm to 60 mm.In addition,matrix damage represents the primary damage mode in multi-point impact,and the calculated ratio of energy absorbed by the top face sheet and honeycomb core,in relation to the total absorbed energy,serves as a clear indicator of the damage severity experienced by both components.This work is enlightening for the structural design of impact-resistant composites.