针对风力助航船舶航线优化中存在的风能利用效率量化不足、油耗预测精度受限以及多目标协同优化机制缺失等问题,提出1种融合动态风帆控制与混合驱动预测的多目标航线优化方法。通过建立基于流体力学特性的动态风帆控制策略模型,实现风...针对风力助航船舶航线优化中存在的风能利用效率量化不足、油耗预测精度受限以及多目标协同优化机制缺失等问题,提出1种融合动态风帆控制与混合驱动预测的多目标航线优化方法。通过建立基于流体力学特性的动态风帆控制策略模型,实现风帆辅助推力的空间矢量解析,该模型突破传统静态攻角设定的局限性,可即时动态调整帆角参数,使风能转化效率处于较高水平。为解决传统物理模型环境适应性差与数据驱动方法物理可解释性弱的双重局限,构建物理约束下的人工神经网络分层融合架构,通过船舶运动学方程构建特征空间基底,采用注意力机制引导的人工神经网络进行残差学习。该方法在保留能耗物理机理的同时,实现数据特征与流体力学方程的双向耦合,经北大西洋航线的验证表明,其油耗预测平均绝对百分比误差(mean absolute percentage error,MAPE)较纯物理模型降低21.9%,较纯数据驱动方法的可解释性也大大提升。在此基础上,建立包含时间成本和燃油消耗的多目标优化模型,设计基于非支配排序遗传算法(non-dominated sorting genetic algorithm,NSGA-Ⅱ)和逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)的协同优化算法,其非劣解集收敛速度较标准算法得以提升。以“新伊敦”轮为对象的实证研究表明:优化后的航线在北大西洋典型航次中,风帆有效工作效率提升,相较于传统推荐航线,优化航线的单航次航行时间缩短5%左右,油耗成本和固定成本分别降低9.1%和4.95%,总成本降低超过7.2%,有效的提高了风力助航船的经济效益并较少了对环境的污染。展开更多
本文提出了一种改进YOLOv5的水面小目标检测算法.在网络结构上对浅层特征进行融合,新增一个检测头用于微小目标的检测.利用ConvMixer的结构特性,设计C3_CML模块用于取代原主干网络和颈部网络中特定位置的C3模块,通过增强图像特征信息空...本文提出了一种改进YOLOv5的水面小目标检测算法.在网络结构上对浅层特征进行融合,新增一个检测头用于微小目标的检测.利用ConvMixer的结构特性,设计C3_CML模块用于取代原主干网络和颈部网络中特定位置的C3模块,通过增强图像特征信息空间通道位置关系的提取能力,从而提升对有效目标区域的关注,同时降低模型复杂度.设计了新的损失函数,综合使用IOU(intersection over union)和NWD(normalized wasserstein distance)作为新的边界框损失评价指标,降低对小目标位置偏差的敏感性,显著提高小目标的检测性能.结果表明:相比原始YOLOv5算法,改进后的算法有效减少了水面密集小目标和极小目标的漏检率,同时检测精度得到了显著提高.展开更多
文摘针对风力助航船舶航线优化中存在的风能利用效率量化不足、油耗预测精度受限以及多目标协同优化机制缺失等问题,提出1种融合动态风帆控制与混合驱动预测的多目标航线优化方法。通过建立基于流体力学特性的动态风帆控制策略模型,实现风帆辅助推力的空间矢量解析,该模型突破传统静态攻角设定的局限性,可即时动态调整帆角参数,使风能转化效率处于较高水平。为解决传统物理模型环境适应性差与数据驱动方法物理可解释性弱的双重局限,构建物理约束下的人工神经网络分层融合架构,通过船舶运动学方程构建特征空间基底,采用注意力机制引导的人工神经网络进行残差学习。该方法在保留能耗物理机理的同时,实现数据特征与流体力学方程的双向耦合,经北大西洋航线的验证表明,其油耗预测平均绝对百分比误差(mean absolute percentage error,MAPE)较纯物理模型降低21.9%,较纯数据驱动方法的可解释性也大大提升。在此基础上,建立包含时间成本和燃油消耗的多目标优化模型,设计基于非支配排序遗传算法(non-dominated sorting genetic algorithm,NSGA-Ⅱ)和逼近理想解排序法(technique for order preference by similarity to ideal solution,TOPSIS)的协同优化算法,其非劣解集收敛速度较标准算法得以提升。以“新伊敦”轮为对象的实证研究表明:优化后的航线在北大西洋典型航次中,风帆有效工作效率提升,相较于传统推荐航线,优化航线的单航次航行时间缩短5%左右,油耗成本和固定成本分别降低9.1%和4.95%,总成本降低超过7.2%,有效的提高了风力助航船的经济效益并较少了对环境的污染。
文摘本文提出了一种改进YOLOv5的水面小目标检测算法.在网络结构上对浅层特征进行融合,新增一个检测头用于微小目标的检测.利用ConvMixer的结构特性,设计C3_CML模块用于取代原主干网络和颈部网络中特定位置的C3模块,通过增强图像特征信息空间通道位置关系的提取能力,从而提升对有效目标区域的关注,同时降低模型复杂度.设计了新的损失函数,综合使用IOU(intersection over union)和NWD(normalized wasserstein distance)作为新的边界框损失评价指标,降低对小目标位置偏差的敏感性,显著提高小目标的检测性能.结果表明:相比原始YOLOv5算法,改进后的算法有效减少了水面密集小目标和极小目标的漏检率,同时检测精度得到了显著提高.