电动车骑行者的安全问题已成为社会焦点,而佩戴安全头盔被证明是减少事故伤害的有效方法。为加强道路交通安全,提高监管效率,本文提出一种基于智能通信和深度学习的无人机辅助头盔智能检测算法。通过结合智能通信技术,无人机可以实时传...电动车骑行者的安全问题已成为社会焦点,而佩戴安全头盔被证明是减少事故伤害的有效方法。为加强道路交通安全,提高监管效率,本文提出一种基于智能通信和深度学习的无人机辅助头盔智能检测算法。通过结合智能通信技术,无人机可以实时传输视频数据并通过智能算法进行快速分析。本文首先提出改进的Outlook-C2f架构,以提高算法对小目标的关注度;其次,在特征金字塔网络(FPN)中使用CARAFE代替上采样,动态生成权重,以实现精确的特征重构,提高空间分辨率;最后,集成WIoU以提高定位信息的准确性。实验结果表明,基于道路实拍数据集,改进后的YOLOv8算法的mAP(mean average precision)和FPS(frames per second)分别达到96.7%和26.91帧/s,显著优于主流算法,展现了其在复杂交通场景中的应用潜力。展开更多
文摘电动车骑行者的安全问题已成为社会焦点,而佩戴安全头盔被证明是减少事故伤害的有效方法。为加强道路交通安全,提高监管效率,本文提出一种基于智能通信和深度学习的无人机辅助头盔智能检测算法。通过结合智能通信技术,无人机可以实时传输视频数据并通过智能算法进行快速分析。本文首先提出改进的Outlook-C2f架构,以提高算法对小目标的关注度;其次,在特征金字塔网络(FPN)中使用CARAFE代替上采样,动态生成权重,以实现精确的特征重构,提高空间分辨率;最后,集成WIoU以提高定位信息的准确性。实验结果表明,基于道路实拍数据集,改进后的YOLOv8算法的mAP(mean average precision)和FPS(frames per second)分别达到96.7%和26.91帧/s,显著优于主流算法,展现了其在复杂交通场景中的应用潜力。