Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel prepara...Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise.展开更多
Atomic surfaces are strictly required by high-performance devices of diamond.Nevertheless,diamond is the hardest material in nature,leading to the low material removal rate(MRR)and high surface roughness during machin...Atomic surfaces are strictly required by high-performance devices of diamond.Nevertheless,diamond is the hardest material in nature,leading to the low material removal rate(MRR)and high surface roughness during machining.Noxious slurries are widely used in conventional chemical mechanical polishing(CMP),resulting in the possible pollution to the environment.Moreover,the traditional slurries normally contain more than four ingredients,causing difficulties to control the process and quality of CMP.To solve these challenges,a novel green CMP for single crystal diamond was developed,consisting of only hydrogen peroxide,diamond abrasive and Prussian blue(PB)/titania catalyst.After CMP,atomic surface is achieved with surface roughness Sa of 0.079 nm,and the MRR is 1168 nm·h^(-1).Thickness of damaged layer is merely 0.66 nm confirmed by transmission electron microscopy(TEM).X-ray photoelectron spectroscopy,electron paramagnetic resonance and TEM reveal that·OH radicals form under ultraviolet irradiation on PB/titania catalyst.The·OH radicals oxidize diamond,transforming it from monocrystalline to amorphous atomic structure,generating a soft amorphous layer.This contributes the high MRR and formation of atomic surface on diamond.The developed novel green CMP offers new insights to achieve atomic surface of diamond for potential use in their high-performance devices.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52175401)Hunan Provincial Postgraduate Scientific Research Innovation Project(Grant No.QL20230244)+1 种基金Enterprise Innovation and Development Joint Program of National Natural Science Foundation of China(Grant No.U20B2032)Hunan Provincial Science and Technology Innovation Program(Grant No.2022RC1050).
文摘Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise.
基金financial support from the National Key Research and Development Program of China(2018YFA0703400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(GK239909299001021)+1 种基金the Ninth China Association for Science and Technology Youth Talent Lift Project Support Plan(KYZ015324002)the Changjiang Scholars Program of Chinese Ministry of Education。
文摘Atomic surfaces are strictly required by high-performance devices of diamond.Nevertheless,diamond is the hardest material in nature,leading to the low material removal rate(MRR)and high surface roughness during machining.Noxious slurries are widely used in conventional chemical mechanical polishing(CMP),resulting in the possible pollution to the environment.Moreover,the traditional slurries normally contain more than four ingredients,causing difficulties to control the process and quality of CMP.To solve these challenges,a novel green CMP for single crystal diamond was developed,consisting of only hydrogen peroxide,diamond abrasive and Prussian blue(PB)/titania catalyst.After CMP,atomic surface is achieved with surface roughness Sa of 0.079 nm,and the MRR is 1168 nm·h^(-1).Thickness of damaged layer is merely 0.66 nm confirmed by transmission electron microscopy(TEM).X-ray photoelectron spectroscopy,electron paramagnetic resonance and TEM reveal that·OH radicals form under ultraviolet irradiation on PB/titania catalyst.The·OH radicals oxidize diamond,transforming it from monocrystalline to amorphous atomic structure,generating a soft amorphous layer.This contributes the high MRR and formation of atomic surface on diamond.The developed novel green CMP offers new insights to achieve atomic surface of diamond for potential use in their high-performance devices.